'This is the code to generate the data presented in Figures 1 and 2 of the the paper
'"Induction with and without natural properties: a new approach to the New Riddle of Induction".
Induction with and without natural propertit
To run the program, create a windows form application with single button "Button 1", paste this code into Form1.vb, and place a breakpoint at line 66 (End Sub).
After executing the program, press Button 1 ,
Once the program breaks at line 66, data of the type presented in Figure 1 is stored in the array "Mean_Error_at_Freq",
and data of the type presented in Figure 2 is stored in the array "Mean_Error_for_Grue at Frea".
Imports System.Math
Public Class Form1
Dim Population_Size As Integer $=10000$
Dim Sample_Size As Double $=100$
Dim Big_Loop_Size As Integer $=1000000$ 'Number of samples taken for each possible frequency of $G$ in the population
Dim Granularity As Integer $=100$ ' Determines what possible frequencies of $G s$ in the population are computed For
Dim RandomClass As New Random()
Dim RandomNumber As Double
Private Sub Button__Click(ByVal sender As System.object, ByVal e As System.EventArgs) Handles Button1.Click
Dim Number_of_Gs As Integer
Dim Remaining_Population As Integer
Dim G-Count As Integer
Dim Mean Errorat Freq(Granularity) As Double
Dim Mean Error-for Gruent
Dim Mean_Error_for_Grue_at_Freq(Granularity) As Double
Dim Grue_Freq As Double
For freq $=\theta$ To Granularity 'Loops through different possible frequencies of Gs in the population. See line 42 .
$\begin{aligned} & \text { Mean_Error__t_Freq(freq) }=\theta \\ & \text { Mean_-fror_for_Grue_at_Freq(freq) }\end{aligned}=\theta$
For runs $=1$ To Big_Loop_Size
Remaining_Population $=$ Population_Size
Number_of Gs $=($ freq / Granularity $) *$ Population_Size
$G$ Count $=\theta$
Number_of_Gs
G_Count $=\theta$ (freq/Granularity) * Population_Size
For sample_item $=1$ To Sample_Size
RandomNumber $=$ RandomClass. NextDouble()
RandomNumber $=$ RRandomumumer * Remaining_Population
If Randolnumber $\ll$ Number_of_Gs Then
6 Count $=6$ Count +1$)^{2}$
End If If
End If
Remaining_Population $=$ Remaining_Population -1
Next
Grue_Freq $=($ G_Count $+($ Population_Size - Sample_Size) $-($ Number_of_Gs - G_Count) $) /$ Population_Size
 Next

Next
End Sub 'Put break point here
End Class

