
'This is the code to generate the data presented in Figures 1 and 2 of the the paper
'"Induction with and without natural properties: a new approach to the New Riddle of Induction".
'The program was created in Visual Studio 2019.
'To run the program, create a windows form application with single button "Button 1", paste this code into Form1.vb, and place a breakpoint at line 66 (End Sub).
'After executing the program, press Button 1.
'Once the program breaks at line 66, data of the type presented in Figure 1 is stored in the array "Mean_Error_at_Freq",
'and data of the type presented in Figure 2 is stored in the array "Mean_Error_for_Grue_at_Freq".

Imports System.Math

Public Class Form1

 Dim Population_Size As Integer = 10000
 Dim Sample_Size As Double = 100
 Dim Big_Loop_Size As Integer = 1000000 'Number of samples taken for each possible frequency of G in the population
 Dim Granularity As Integer = 100 'Determines what possible frequencies of Gs in the population are computed. For maximum Granularity to Population_Size. See line 33.

 Dim RandomClass As New Random()
 Dim RandomNumber As Double

 Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles Button1.Click

 Dim Number_of_Gs As Integer
 Dim Remaining_Population As Integer
 Dim G_Count As Integer
 Dim Mean_Error_at_Freq(Granularity) As Double
 Dim Mean_Error_for_Grue_at_Freq(Granularity) As Double
 Dim Grue_Freq As Double

 For freq = 0 To Granularity 'Loops through different possible frequencies of Gs in the population. See line 42.

 Mean_Error_at_Freq(freq) = 0
 Mean_Error_for_Grue_at_Freq(freq) = 0

 For runs = 1 To Big_Loop_Size

 Remaining_Population = Population_Size
 Number_of_Gs = (freq / Granularity) * Population_Size
 G_Count = 0

 For sample_item = 1 To Sample_Size
 RandomNumber = RandomClass.NextDouble()
 RandomNumber = RandomNumber * Remaining_Population
 If RandomNumber <= Number_of_Gs Then
 G_Count = G_Count + 1
 Number_of_Gs = Number_of_Gs - 1
 End If
 Remaining_Population = Remaining_Population - 1

 Next

 Grue_Freq = (G_Count + (Population_Size - Sample_Size) - (Number_of_Gs - G_Count)) / Population_Size

 Mean_Error_at_Freq(freq) = Mean_Error_at_Freq(freq) + Sqrt(((freq / Granularity) - (G_Count / Sample_Size)) * ((freq / Granularity) - (G_Count / Sample_Size)))
 Mean_Error_for_Grue_at_Freq(freq) = Mean_Error_for_Grue_at_Freq(freq) + Sqrt((Grue_Freq - (G_Count / Sample_Size)) * (Grue_Freq - (G_Count / Sample_Size)))

 Next

 Mean_Error_at_Freq(freq) = Mean_Error_at_Freq(freq) / Big_Loop_Size
 Mean_Error_for_Grue_at_Freq(freq) = Mean_Error_for_Grue_at_Freq(freq) / Big_Loop_Size

 Next

 End Sub 'Put break point here.

End Class

