
'This is the code to generate the data presented in Figure 3 of the the paper
'"Induction with and without natural properties: a new approach to the New Riddle of Induction".
'The program was created in Visual Studio 2019.
'To run the program, create a windows form application with single button "Button 1", paste this code into Form1.vb, and place a breakpoint at line 502 (End Sub).
'After executing the program, press Button 1.
'Sample_Size is currently set to 8. In order to generate the data for Figure 3, you will need to run the program 6 times for the 6 sample sizes presented in the figure.
'Once the program breaks at line 502, data of the type presented in Figure 3 will have been outputted to an Excel file.

Imports System.Math

Public Class Form1

 Dim Big_Loop_Size As Integer = 1000
 Dim Number_of_Objects As Integer = 1000000
 Dim Sample_Size As Double = 8
 Dim Number_of_Dimensions As Integer = 4
 Dim Number_of_Natural_Categories As Double = 8
 Dim Std_Dev_for_Natural_Categories As Double = 0.2
 Dim Number_of_Centroids As Integer = 8 'Number_of_Natural_Categories

 Dim Natural_Category_Means(Number_of_Natural_Categories, Number_of_Dimensions) As Double
 Dim Natural_Category_Probabilities(Number_of_Natural_Categories) As Double

 Dim Natural_Category_Counts(Number_of_Natural_Categories) As Double

 Dim Object_Coordinates(Number_of_Objects, Number_of_Dimensions) As Double

 Dim Centroid_Coordinates(Number_of_Centroids, Number_of_Dimensions) As Double
 Dim Provisional_Centroid_Coordinates(Number_of_Centroids, Number_of_Dimensions) As Double
 Dim Top_Centroid_Coordinates(Number_of_Centroids, Number_of_Dimensions) As Double

 Dim Distance_Holder1 As Double
 Dim Distance_Holder2 As Double

 Dim Object_Centroid_Assigment(Number_of_Objects) As Double
 Dim Object_Provisional_Centroid_Assigment(Number_of_Objects) As Double
 Dim Object_Updated_Centroid_Assigment(Number_of_Objects) As Double
 Dim Object_Top_Centroid_Assigment(Number_of_Objects) As Double

 Dim Updated_Centroid_Coordinates(Number_of_Centroids, Number_of_Dimensions) As Double

 Dim Total_Object_to_Assigned_Top_Centroids_Distance As Double
 Dim Total_Object_to_Assigned_Provisional_Centroids_Distance As Double
 Dim Total_Object_to_Assigned_Updated_Centroids_Distance As Double

 Dim Number_of_Objects_Attached_to_Centroid_Counter As Double

 Dim objectcounter As Integer

 Dim Sample_Object_Coordinates(Sample_Size, Number_of_Dimensions) As Double
 Dim Sample_Object_Top_Centroid_Assigment(Number_of_Objects) As Double

 Dim Object_to_Fitted_Category_Count(Number_of_Centroids) As Double
 Dim Object_to_Fitted_Category_in_Sample_Count(Number_of_Centroids) As Double

 Dim Mean_Distance_from_frequencies_in_Universe_and_Sample_for_fitted_Classes As Double

 Dim Fitted_Class_Frequencies_in_Sample(Number_of_Centroids) As Double
 Dim Fitted_Class_Frequencies_in_Universe(Number_of_Centroids) As Double
 Dim Rectangular_Category_Frequencies_in_Sample(Number_of_Centroids) As Double
 Dim Rectangular_Category_Frequencies_in_Universe(Number_of_Centroids) As Double
 Dim Non_convex_Category_Frequencies_in_Sample(Number_of_Centroids) As Double
 Dim Non_convex_Category_Frequencies_in_Universe(Number_of_Centroids) As Double

 Dim Fitted_Category_Accuracy(Big_Loop_Size) As Double
 Dim Rectangular_Category_Accuracy(Big_Loop_Size) As Double
 'Dim Non_convex_Category_Accuracy(Big_Loop_Size) As Double

 Dim Mean_Fitted_Category_Accuracy As Double
 Dim Mean_Rectangular_Category_Accuracy As Double
 'Dim Mean_Non_convex_Category_Accuracy As Double

 Dim RandomClass As New Random()
 Dim RandomNumber As Double

 Dim holder As Double

 Dim objApp As Microsoft.Office.Interop.Excel.Application 'used in accessing an manipulating an excel spreadsheet
 Dim objBook As Microsoft.Office.Interop.Excel._Workbook 'for excel

 Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles Button1.Click

 Dim objBooks As Microsoft.Office.Interop.Excel.Workbooks 'for excel
 Dim objSheets As Microsoft.Office.Interop.Excel.Sheets 'for excel
 Dim objSheet As Microsoft.Office.Interop.Excel._Worksheet 'for excel
 Dim range As Microsoft.Office.Interop.Excel.Range 'for excel

 ' Create a new instance of Excel and start a new workbook:
 objApp = New Microsoft.Office.Interop.Excel.Application()
 objBooks = objApp.Workbooks
 objBook = objBooks.Add
 objSheets = objBook.Worksheets
 objSheet = objSheets(1)

 'range = objSheet.Range("A1", Reflection.Missing.Value) 'for excel
 'range = range.Resize(Players, Rounds + 1) 'for excel

 'Dim saRet(Players, Rounds + 1) As Double 'This matrix will temporarily store the match outcomes and the predictions of the nonMIs.

 'range.Value = saRet 'indicates the cells of the spreadsheet that will be loaded into saRet

 'Return control of Excel to the user.
 objApp.Visible = True
 objApp.UserControl = True

 'Clean up a little.
 range = Nothing
 objSheet = Nothing
 objSheets = Nothing
 objBooks = Nothing

 Randomize()

 For big_loop = 1 To Big_Loop_Size

 For x = 1 To Number_of_Natural_Categories
 Natural_Category_Counts(x) = 0
 Next

 'Choose the mean values for categories
 For x = 1 To Number_of_Natural_Categories
 For y = 1 To Number_of_Dimensions
 RandomNumber = RandomClass.NextDouble()
 Natural_Category_Means(x, y) = RandomNumber
 Next
 Next

 'Determine Number of Objects for each Category:
 holder = 0
 For x = 1 To Number_of_Natural_Categories
 RandomNumber = RandomClass.NextDouble()
 Natural_Category_Probabilities(x) = RandomNumber
 holder = holder + RandomNumber
 Next

 For x = 1 To Number_of_Natural_Categories
 Natural_Category_Probabilities(x) = Natural_Category_Probabilities(x) / holder
 Next

 For x = 1 To Number_of_Objects
 RandomNumber = RandomClass.NextDouble()
 'RandomNumber = RandomNumber * Number_of_Natural_Categories
 holder = 0
 For y = 1 To Number_of_Natural_Categories
 holder = holder + Natural_Category_Probabilities(y)
 If RandomNumber < holder Then
 Natural_Category_Counts(y) = Natural_Category_Counts(y) + 1
 y = Number_of_Natural_Categories
 End If
 Next
 Next

 'Determine the position of each object:
 objectcounter = 0

 holder = Math.Ceiling(Number_of_Dimensions / 2) * 2

 For x = 1 To Number_of_Natural_Categories

 For y = 1 To Natural_Category_Counts(x)

 objectcounter = objectcounter + 1

 GaussNumDist(0, Std_Dev_for_Natural_Categories, holder)

 For z = 1 To Number_of_Dimensions

 Object_Coordinates(objectcounter, z) = Natural_Category_Means(x, z) + GaussNumArray(z)

 If Object_Coordinates(objectcounter, z) > 1 Then
 Object_Coordinates(objectcounter, z) = 1
 End If
 If Object_Coordinates(objectcounter, z) < 0 Then
 Object_Coordinates(objectcounter, z) = 0
 End If

 Next

 Next

 Next

 'Generate a sample:
 For x = 1 To Sample_Size
 RandomNumber = RandomClass.NextDouble()
 RandomNumber = RandomNumber * Number_of_Objects
 RandomNumber = Math.Ceiling(RandomNumber)
 For y = 1 To Number_of_Dimensions
 Sample_Object_Coordinates(x, y) = Object_Coordinates(RandomNumber, y)
 Next

 Next

 'loop to run for different choices of initial centroids:
 Total_Object_to_Assigned_Top_Centroids_Distance = 100000000
 For L = 1 To 10

 'Choose initial centroids:
 For x = 1 To Number_of_Centroids
 For y = 1 To Number_of_Dimensions
 RandomNumber = RandomClass.NextDouble()
 Provisional_Centroid_Coordinates(x, y) = RandomNumber
 Next
 Next

 'Assign Objects to Centroids:
 For a = 1 To Sample_Size
 Distance_Holder2 = 10
 For x = 1 To Number_of_Centroids
 Distance_Holder1 = 0
 For y = 1 To Number_of_Dimensions
 Distance_Holder1 = Distance_Holder1 + distance(Provisional_Centroid_Coordinates(x, y), Sample_Object_Coordinates(a, y))
 Next
 If Distance_Holder1 < Distance_Holder2 Then
 Object_Provisional_Centroid_Assigment(a) = x
 Distance_Holder2 = Distance_Holder1
 End If
 Next
 Next

 'Compute Total Subclass to Assigned Centroids Distance:
 Total_Object_to_Assigned_Provisional_Centroids_Distance = 0
 For x = 1 To Number_of_Centroids
 For a = 1 To Sample_Size
 If Object_Provisional_Centroid_Assigment(a) = x Then
 For y = 1 To Number_of_Dimensions
 Total_Object_to_Assigned_Provisional_Centroids_Distance = Total_Object_to_Assigned_Provisional_Centroids_Distance + distance(Provisional_Centroid_Coordinates(x, y),
Sample_Object_Coordinates(a, y))
 Next
 End If
 Next
 Next

 'Iterate Lloyd's Algorythm:
 For r = 1 To 10

 'Update Centroids:
 For x = 1 To Number_of_Centroids
 Number_of_Objects_Attached_to_Centroid_Counter = 0
 For y = 1 To Number_of_Dimensions
 Updated_Centroid_Coordinates(x, y) = 0
 Next
 For a = 1 To Sample_Size
 If Object_Provisional_Centroid_Assigment(a) = x Then
 For y = 1 To Number_of_Dimensions
 Updated_Centroid_Coordinates(x, y) = Updated_Centroid_Coordinates(x, y) + Sample_Object_Coordinates(a, y)
 Next
 Number_of_Objects_Attached_to_Centroid_Counter = Number_of_Objects_Attached_to_Centroid_Counter + 1
 End If
 Next
 If Number_of_Objects_Attached_to_Centroid_Counter > 0 Then
 For y = 1 To Number_of_Dimensions
 Updated_Centroid_Coordinates(x, y) = Updated_Centroid_Coordinates(x, y) / Number_of_Objects_Attached_to_Centroid_Counter
 Next
 Else
 For y = 1 To Number_of_Dimensions
 RandomNumber = RandomClass.NextDouble()
 Updated_Centroid_Coordinates(x, y) = RandomNumber
 Next
 End If
 Next

 'Assign Objects to Centroids:
 For a = 1 To Sample_Size
 Distance_Holder2 = 10
 For x = 1 To Number_of_Centroids
 Distance_Holder1 = 0
 For y = 1 To Number_of_Dimensions
 Distance_Holder1 = Distance_Holder1 + distance(Updated_Centroid_Coordinates(x, y), Sample_Object_Coordinates(a, y))
 Next
 If Distance_Holder1 < Distance_Holder2 Then
 Object_Updated_Centroid_Assigment(a) = x
 Distance_Holder2 = Distance_Holder1
 End If
 Next
 Next

 'Compute Total Object to Assigned Centroids Distance:
 Total_Object_to_Assigned_Updated_Centroids_Distance = 0
 For x = 1 To Number_of_Centroids
 For a = 1 To Sample_Size
 If Object_Updated_Centroid_Assigment(a) = x Then

 For y = 1 To Number_of_Dimensions
 Total_Object_to_Assigned_Updated_Centroids_Distance = Total_Object_to_Assigned_Updated_Centroids_Distance + distance(Updated_Centroid_Coordinates(x, y),
Sample_Object_Coordinates(a, y))
 Next
 End If
 Next
 Next

 'Test whether Updated Centroids are better.
 If Total_Object_to_Assigned_Updated_Centroids_Distance < Total_Object_to_Assigned_Provisional_Centroids_Distance Then
 Total_Object_to_Assigned_Provisional_Centroids_Distance = Total_Object_to_Assigned_Updated_Centroids_Distance
 For x = 1 To Number_of_Centroids
 For y = 1 To Number_of_Dimensions
 Provisional_Centroid_Coordinates(x, y) = Updated_Centroid_Coordinates(x, y)
 Next
 Next
 For a = 1 To Sample_Size
 Object_Provisional_Centroid_Assigment(a) = Object_Updated_Centroid_Assigment(a)
 Next
 Else
 r = 1000
 End If

 Next

 If Total_Object_to_Assigned_Provisional_Centroids_Distance < Total_Object_to_Assigned_Top_Centroids_Distance Then
 Total_Object_to_Assigned_Top_Centroids_Distance = Total_Object_to_Assigned_Provisional_Centroids_Distance
 For x = 1 To Number_of_Centroids
 For y = 1 To Number_of_Dimensions
 Top_Centroid_Coordinates(x, y) = Provisional_Centroid_Coordinates(x, y)
 Next
 Next
 For a = 1 To Sample_Size
 Sample_Object_Top_Centroid_Assigment(a) = Object_Provisional_Centroid_Assigment(a)
 Next
 End If

 Next

 'compute frequencies of fitted class membership in sample

 For x = 1 To Number_of_Centroids
 Fitted_Class_Frequencies_in_Sample(x) = 0
 Next
 For x = 1 To Sample_Size
 For y = 1 To Number_of_Centroids
 If Sample_Object_Top_Centroid_Assigment(x) = y Then
 Fitted_Class_Frequencies_in_Sample(y) = Fitted_Class_Frequencies_in_Sample(y) + 1
 End If
 Next
 Next
 For y = 1 To Number_of_Centroids
 Fitted_Class_Frequencies_in_Sample(y) = Fitted_Class_Frequencies_in_Sample(y) / Sample_Size
 Next

 'compute frequencies of fitted class membership in population
 'begin by assigning objects to centroids:
 For a = 1 To Number_of_Objects
 Distance_Holder2 = 10000
 For x = 1 To Number_of_Centroids
 Distance_Holder1 = 0
 For y = 1 To Number_of_Dimensions
 Distance_Holder1 = Distance_Holder1 + distance(Top_Centroid_Coordinates(x, y), Object_Coordinates(a, y))
 Next
 If Distance_Holder1 < Distance_Holder2 Then
 Object_Updated_Centroid_Assigment(a) = x
 Distance_Holder2 = Distance_Holder1
 End If
 Next
 Next

 For x = 1 To Number_of_Centroids
 Fitted_Class_Frequencies_in_Universe(x) = 0
 Next
 For x = 1 To Number_of_Objects
 For y = 1 To Number_of_Centroids
 If Object_Updated_Centroid_Assigment(x) = y Then
 Fitted_Class_Frequencies_in_Universe(y) = Fitted_Class_Frequencies_in_Universe(y) + 1
 End If
 Next
 Next
 For y = 1 To Number_of_Centroids
 Fitted_Class_Frequencies_in_Universe(y) = Fitted_Class_Frequencies_in_Universe(y) / Number_of_Objects
 Next

 'Now compute the sample and population frequencies for rectanglular categories:
 For x = 1 To Number_of_Centroids
 Rectangular_Category_Frequencies_in_Sample(x) = 0
 Next
 For x = 1 To Sample_Size
 For y = 1 To Number_of_Centroids
 If (y - 1) / Number_of_Centroids <= Sample_Object_Coordinates(x, 1) And Sample_Object_Coordinates(x, 1) <= y / Number_of_Centroids Then
 Rectangular_Category_Frequencies_in_Sample(y) = Rectangular_Category_Frequencies_in_Sample(y) + 1
 End If
 Next
 Next
 For x = 1 To Number_of_Centroids
 Rectangular_Category_Frequencies_in_Sample(x) = Rectangular_Category_Frequencies_in_Sample(x) / Sample_Size
 Next

 For x = 1 To Number_of_Centroids
 Rectangular_Category_Frequencies_in_Universe(x) = 0
 Next
 For x = 1 To Number_of_Objects
 For y = 1 To Number_of_Centroids
 If (y - 1) / Number_of_Centroids <= Object_Coordinates(x, 1) And Object_Coordinates(x, 1) <= y / Number_of_Centroids Then
 Rectangular_Category_Frequencies_in_Universe(y) = Rectangular_Category_Frequencies_in_Universe(y) + 1
 End If
 Next
 Next
 For x = 1 To Number_of_Centroids
 Rectangular_Category_Frequencies_in_Universe(x) = Rectangular_Category_Frequencies_in_Universe(x) / Number_of_Objects
 Next

 ''Now compute the sample and population frequencies for non-convex categories that are unions of rectangular categories:
 'For x = 1 To Number_of_Centroids
 ' Non_convex_Category_Frequencies_in_Sample(x) = 0
 'Next
 'For x = 1 To Sample_Size
 ' For y = 1 To Number_of_Centroids
 ' If (((y - 1) / (Number_of_Centroids * 2)) + 0.5 <= Sample_Object_Coordinates(x, 1) And Sample_Object_Coordinates(x, 1) <= (y / (Number_of_Centroids * 2)) + 0.5) Or ((y - 1) /
(Number_of_Centroids * 2) <= Sample_Object_Coordinates(x, 1) And Sample_Object_Coordinates(x, 1) <= y / (Number_of_Centroids * 2)) Then
 ' Non_convex_Category_Frequencies_in_Sample(y) = Non_convex_Category_Frequencies_in_Sample(y) + 1
 ' End If
 ' Next
 'Next
 'For x = 1 To Number_of_Centroids
 ' Non_convex_Category_Frequencies_in_Sample(x) = Non_convex_Category_Frequencies_in_Sample(x) / Sample_Size
 'Next

 'For x = 1 To Number_of_Centroids
 ' Non_convex_Category_Frequencies_in_Universe(x) = 0
 'Next
 'For x = 1 To Number_of_Objects
 ' For y = 1 To Number_of_Centroids
 ' If (((y - 1) / (Number_of_Centroids * 2)) + 0.5 <= Object_Coordinates(x, 1) And Object_Coordinates(x, 1) <= (y / (Number_of_Centroids * 2)) + 0.5) Or ((y - 1) / (Number_of_Centroids *
2) <= Object_Coordinates(x, 1) And Object_Coordinates(x, 1) <= y / (Number_of_Centroids * 2)) Then
 ' Non_convex_Category_Frequencies_in_Universe(y) = Non_convex_Category_Frequencies_in_Universe(y) + 1
 ' End If
 ' Next
 'Next

 'For x = 1 To Number_of_Centroids
 ' Non_convex_Category_Frequencies_in_Universe(x) = Non_convex_Category_Frequencies_in_Universe(x) / Number_of_Objects
 'Next

 For x = 1 To Number_of_Centroids
 Fitted_Category_Accuracy(big_loop) = Fitted_Category_Accuracy(big_loop) + Math.Abs(Fitted_Class_Frequencies_in_Sample(x) - Fitted_Class_Frequencies_in_Universe(x))
 Rectangular_Category_Accuracy(big_loop) = Rectangular_Category_Accuracy(big_loop) + Math.Abs(Rectangular_Category_Frequencies_in_Sample(x) - Rectangular_Category_Frequencies_in_Universe(x))
 'Non_convex_Category_Accuracy(big_loop) = Non_convex_Category_Accuracy(big_loop) + Math.Abs(Non_convex_Category_Frequencies_in_Sample(x) - Non_convex_Category_Frequencies_in_Universe(x))
 Next

 Fitted_Category_Accuracy(big_loop) = Fitted_Category_Accuracy(big_loop) / Number_of_Centroids
 Rectangular_Category_Accuracy(big_loop) = Rectangular_Category_Accuracy(big_loop) / Number_of_Centroids
 'Non_convex_Category_Accuracy(big_loop) = Non_convex_Category_Accuracy(big_loop) / Number_of_Centroids

 Next

 For x = 1 To Big_Loop_Size
 Mean_Fitted_Category_Accuracy = Mean_Fitted_Category_Accuracy + Fitted_Category_Accuracy(x)
 Mean_Rectangular_Category_Accuracy = Mean_Rectangular_Category_Accuracy + Rectangular_Category_Accuracy(x)
 'Mean_Non_convex_Category_Accuracy = Mean_Non_convex_Category_Accuracy + Non_convex_Category_Accuracy(x)
 Next

 Mean_Fitted_Category_Accuracy = Mean_Fitted_Category_Accuracy / Big_Loop_Size
 Mean_Rectangular_Category_Accuracy = Mean_Rectangular_Category_Accuracy / Big_Loop_Size
 'Mean_Non_convex_Category_Accuracy = Mean_Non_convex_Category_Accuracy / Big_Loop_Size

 objApp.Cells(1, 1) = "Big_Loop_Size"
 objApp.Cells(1, 2) = Big_Loop_Size

 objApp.Cells(2, 1) = "Number_of_Objects"
 objApp.Cells(2, 2) = Number_of_Objects

 objApp.Cells(3, 1) = "Sample_Size"
 objApp.Cells(3, 2) = Sample_Size

 objApp.Cells(4, 1) = "Number_of_Dimensions"
 objApp.Cells(4, 2) = Number_of_Dimensions

 objApp.Cells(5, 1) = "Number_of_Natural_Categories"
 objApp.Cells(5, 2) = Number_of_Natural_Categories

 objApp.Cells(6, 1) = "Std_Dev_for_Natural_Categoriese"
 objApp.Cells(6, 2) = Std_Dev_for_Natural_Categories

 objApp.Cells(7, 1) = "Number_of_Centroids"
 objApp.Cells(7, 2) = Number_of_Centroids

 objApp.Cells(8, 1) = "Mean Error Rate for Natural Categories"
 objApp.Cells(8, 2) = Mean_Fitted_Category_Accuracy

 objApp.Cells(9, 1) = "Mean Error Rate for Non-Natural Categories"
 objApp.Cells(9, 2) = Mean_Rectangular_Category_Accuracy

 'objApp.Cells(10, 1) = "Mean_Non_convex_Category_Accuracy"
 'objApp.Cells(10, 2) = Mean_Non_convex_Category_Accuracy

 End Sub

 Public Function distance(ByRef r As Double, ByVal s As Double) As Double
 Dim dist As Double = 0
 dist = (r - s) * (r - s) 'squared
 'dist = Math.Abs(r - s) 'manhatten
 'If dist < 0 Or dist > 10 Then
 ' dist = dist
 'End If
 Return dist
 End Function

End Class

Module Module1
 Friend GaussNumArray() As Double
 Friend intICell As Long

 Friend Function GaussNumDist(ByVal Mean As Double, ByVal StdDev As Double, ByVal SampleSize As Integer)
 intICell = 1 'Loop variable

 ReDim GaussNumArray(SampleSize)

 Do While (intICell < (SampleSize + 1))
 Call NumDist(Mean, StdDev)
 Application.DoEvents()
 Loop
 End Function

 Sub NumDist(ByVal meanin As Double, ByVal sdin As Double)

 'Defining variables
 Dim dblR1 As Double
 Dim dblR2 As Double
 Dim mean As Double
 Dim var As Double
 Dim circ As Double
 Dim trans As Double
 Dim dblY1 As Double
 Dim dblY2 As Double
 Dim Pi As Double
 Pi = 4 * Atan(1)

 'Get two random numbers
 dblR1 = (2 * UniformRandomNumber()) - 1
 dblR2 = (2 * UniformRandomNumber()) - 1

 circ = (dblR1 ^ 2) + (dblR2 ^ 2) 'Radius of circle

 If circ >= 1 Then 'If outside unit circle, then reject number
 Call NumDist(meanin, sdin)
 Exit Sub
 End If

 'Transform to Gaussian
 trans = Sqrt(-2 * Log(circ) / circ)

 dblY1 = (trans * dblR1 * sdin) + meanin
 dblY2 = (trans * dblR2 * sdin) + meanin

 GaussNumArray(intICell) = dblY1 'First number

 'Increase intICell for next random number
 intICell = (intICell + 1)

 GaussNumArray(intICell) = dblY2 'Second number

 'Increase intICell again ready for next call of ConvertNumberDistribution
 intICell = (intICell + 1)

 End Sub

 Friend Function UniformRandomNumber() As Double

 'Defining constants
 Const IM1 As Double = 2147483563
 Const IM2 As Double = 2147483399
 Const AM As Double = (1.0# / IM1)
 Const IMM1 As Double = (IM1 - 1.0#)
 Const IA1 As Double = 40014
 Const IA2 As Double = 40692

 Const IQ1 As Double = 53668
 Const IQ2 As Double = 52774
 Const IR1 As Double = 12211
 Const IR2 As Double = 3791
 Const NTAB As Double = 32
 Const NDIV As Double = (1.0# + IM1 / NTAB)
 Const ESP As Double = 0.00000012
 Const RNMX As Double = (1.0# - ESP)

 Dim iCell As Integer
 Dim idum As Double
 Dim j As Integer
 Dim k As Long
 Dim temp As Double

 Static idum2 As Long
 Static iy As Long
 Static iv(NTAB) As Long

 idum2 = 123456789
 iy = 0

 'Seed value required is a negative integer (idum)
 Randomize()
 idum = (-Rnd() * 1000)

 'For loop to generate a sequence of random numbers based on idum
 For iCell = 1 To 10
 'Initialize generator
 If (idum <= 0) Then
 'Prevent idum = 0
 If (-(idum) < 1) Then
 idum = 1
 Else
 idum = -(idum)
 End If
 idum2 = idum
 For j = (NTAB + 7) To 0
 k = ((idum) / IQ1)
 idum = ((IA1 * (idum - (k * IQ1))) - (k * IR1))
 If (idum < 0) Then
 idum = (idum + IM1)
 End If
 If (j < NTAB) Then
 iv(j) = idum
 End If
 Next j
 iy = iv(0)
 End If

 'Start here when not initializing
 k = (idum / IQ1)
 idum = ((IA1 * (idum - (k * IQ1))) - (k * IR1))
 If (idum < 0) Then
 idum = (idum + IM1)
 End If
 k = (idum2 / IQ2)
 idum2 = ((IA2 * (idum2 - (k * IQ2))) - (k * IR2))
 If (idum2 < 0) Then
 idum2 = idum2 + IM2
 End If
 j = (iy / NDIV)
 iy = (iv(j) - idum2)
 iv(j) = idum
 If (iy < 1) Then
 iy = (iy + IMM1)
 End If
 temp = AM * iy
 If (temp <= RNMX) Then
 'Return the value of the random number
 UniformRandomNumber = temp
 End If
 Next iCell
 End Function

End Module

