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Wolpert claims in the abstract and in sec. 4 of his paper that my account would favor 

the induction-friendly frequency-uniform prior distribution. Let me start this section 

by emphasizing that this claim is wrong. On the contrary, in several passages in Schurz 

(2019) it is emphasized that meta-induction is not bound to any particular prior distri-

bution (e.g. on pp. 71f., 167, 240-244). Rather, what I object to Wolpert's no free lunch 

(NFL) theorem is that this theorem rests on a particular prior, namely the induction-

hostile state-uniform prior. Although the justification of meta-induction works even for 

the state-uniform prior, this justification becomes much stronger if one allows for dif-

ferent possible priors that are evaluated and aggregated by probabilistic meta-induc-

tion, including induction-friendly as well as induction-hostile priors. But nowhere in 

my book do I express a preference for frequency-uniform priors, and I wonder how 

Wolpert came to this misunderstanding.  

 Wolpert defends his account against my objection that the NFL theorem for predic-

tions depends on a state-uniform prior, by presenting versions of this theorem that ap-

parently do not assume a state-uniform prior. The goal of this section is to demonstrate 

that in fact these versions do assume a state-uniform prior, at least implicitly, by the 

consideration of (unweighted) sums or averages over all possibilities.  

 Wolpert's paper starts with a nice introduction presenting a game-strategy devised 

by Parrondo as an early example of a strategy of meta-induction, or online learning 

under expert advice (OLEA), as it is called in machine learning. In Parrondo's setting, 

methods are represented by sequences of bits of their payoffs, and a simplified version 

of Parrondo's strategy, call it P, imitates the prediction (or action) of the method that 

has highest cumulated payoff. Obviously, P is a version of ITB. Wolpert explains why 
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P is a good strategy, but it should be added that ITB is not universally optimal.   

 In sec. 2 Wolpert turns to the NFL theorems. They apply only to prediction methods 

that are non-clairvoyant, in the sense that the total information about the past events 

and success rates screens off the next event from its prediction  which is equation (3) 

in sec. 2 of Wolpert's paper. In sec. 2 (below equation (5)) Wolpert presents two ver-

sions of NFL theorems that are only inessentially different. Both versions compare the 

sum or average of the loss or cost of prediction methods over all possible event se-

quences (or states of the world) f, with the result that this cost sum or average cost is 

the same for all methods. There is a second and more important distinction, that be-

tween a strong and a weak variant of the NFL theorem. The strong variant of the NFL 

theorems is presented by Wolpert. This variant presupposes a homogeneous loss func-

tion in the sense of Wolpert (1996, 1349)  which is arguably a too strong condition 

on loss functions  while the weak NFL theorem assumes a merely weakly homogene-

ous loss function (see below).    

 Let C be the set of all possible losses resp. "one-shot" costs c, i.e. the possible dif-

ferences between a prediction and an event (formally C = {c: predValpredeVal: c 

= loss(pred,e)}). The strong variant of the NFL theorem (in both of Wolpert's versions) 

applies to each possible cost value cC and asserts, in simplified worlds, that the prob-

ability of having loss c averaged over all environments is the same for all non-clair-

voyant methods. More precisely, version 1 of Wolpert's NFL theorem asserts that for 

all cC, the sum of the probabilities of a method's attaining cost c in world state f, 

summed over all possible f's (conditional on data of size m) is the same for all methods 

(note that Wolpert's variable COTS ranges over these possible c's).
1
 Wolpert's version 2 

asserts that for all cC, the probability of a method attaining cost c in world state f 

(conditional on a data sequence d) is the same for all methods, given a state-uniform 

probability distribution P(f) over the f's. Now, Wolpert says that a  

 

                                                 
1
  We ignore here Wolpert's probability π(q) of choosing the predicted event q, because q is fixed. 
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"secondary implication of the NFL theorems is that if it so happens that you as-

sume/believe that P(f) is uniform, then the average over f's used in the NFL for 

search theorem [= version 1, G.S.] is the same as P(f) in version 2".  

 

I don't think this implication is "secondary" because summing up the probabilities of 

attaining cost c in f over all f's is essentially the same as averaging over these proba-

bilities (since dividing their sum by their number gives the average) which is in turn 

essentially the same as calculating the overall probability of attaining cost c by a uni-

form prior distribution over the f's (since the average of these probabilities over all f's 

equals their expected probability according to a state-uniform prior over the f's). 

 The condition of homogeneity requires that for every possible loss value cC,  the 

number of possible event values e  Val for which a given prediction pred leads to a 

loss of c is the same for all possible predictions pred  Valpred. Homogeneity is satisfied 

only for prediction games with a zero-one loss function, which gives a maximal loss of 

one if the prediction differs from the event and a zero-loss if the prediction equals the 

event (cf. Schurz 2019, def. 9-1, 326). Obviously homogeneous loss functions are un-

reasonable whenever predictions and/or events are graded. For example, the prediction 

"0.9" of the event "1" is better than the prediction "0.1" (since the distance between 0.9 

and 1 is much smaller than that between 0.1 and 1), although for homogeneous loss 

functions both predictions are equally bad and attain a score of zero. Therefore Schurz 

(2019, sec. 9.1) and Schurz and Thorn (2022) concentrate their investigation on weakly 

homogeneous loss functions, that are mentioned by Wolpert (1996) in a small para-

graph on p. 1354 ("More generally, for an even broader set of loss functions "). A 

loss function is weakly homogeneous iff for each possible prediction pred, the sum (or 

average) of the losses over all possible events is the same. For binary games with real-

valued predictions and absolute loss function, weak homogeneity is satisfied, since for 

every possible prediction pred[0,1], loss(pred,1) + loss(pred,0) = 1  pred + pred = 1 

(Schurz 2019, def. 9.2, 327).  

 The weak variant of the NFL theorem makes the corresponding assertion not for 
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each cost value cC separately, but merely for the sum or average of all cost values. 

In version 1 the weak NFL theorem says that the average cost over all possible event 

sequences f (conditional on data size m), defined as f,cP(c|f,m)c, is the same for all 

methods, and in version 2 it says that the probabilistically expected cost of a method 

(conditional on a data sequence d), defined as f P(f)cP(c|d,f)c, is the same for all 

methods according to a state-uniform distribution P(f) over the f's. Finally, note that 

loss-functions for real-valued events do not even satisfy the condition of weak homo-

geneity and Wolpert's version of the NFL theorem does not hold for real-valued events; 

however, a weaker version of the NFL theorem applies to them (as proved in ibid., 

prop. 9.3).   

 We now turn to Wolpert's arguments against my diagnosis that the NFL theorem for 

predictions depends on a state-uniform prior. These arguments and my objections to 

them apply equally to the strong and the weak variant of Wolpert's NFL theorems. In 

his first argument Wolpert (4th § after equ. (5))) says that  

 

"it must be emphasized that simply allowing [the prior  G.S] P(f) to be non-uni-

form, by itself, does not invalidate the NFL theorems", 

 and some lines later he says that the  

 

"NFL theorems do not assume that the universe is governed by a uniform prior in 

some objective sense."  

 

Here we meet an important confusion that is also found in other machine learning texts 

(for example also in the paper quoted in Shogenji's sec. 5, as mentioned in my sec. 4), 

namely the following: When epistemologists speak of a prior probability they mean 

always a subjective-epistemic probability, i.e. a rational degree of belief, but not an 

objective probability (be it a statistical propensity or an objective single case chance). 

A 'prior' probability is defined as a distribution that one adopts, or should reasonably 

adopt, prior to experience; this notion only makes sense for an epistemic notion of 
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probability, but not for an objective one, because objective probabilities are independ-

ent from whether the subject has experience or not. When machine learners speak of 

an "objective prior", they just mean the true unconditional probability function over 

the possible states of a type of system; but this is entirely different from a prior in the 

epistemic sense. For this reason, Wolpert's accusation in sec. 4 (5th §) that "Schurz 

argues that one “should” adopt a single, specific prior a uniform prior over frequen-

cies" is not only incorrect because I never make any such assertion; in addition 

Wolpert's critique of this position  which is the position of  Laplacean inductivists  

is inappropriate because Wolpert assumes wrongly that the frequency-uniform prior is 

meant in the objective sense. Wolpert attempts to refute this misunderstood position by 

pointing out that "all of statistical physics is based on a uniform distribution over pat-

terns, not over frequencies". Wolpert's misleading critique culminates in his devious 

diagnosis in the last paragraph of his paper that  

 

"Schurz’s proposal for a uniform prior over frequencies runs afoul of thousands 

(tens of thousands?) of previous experiments concerning the real, physical world".  

 

This wrongs me twice: first because it is not me who assumes frequency-uniform dis-

tributions but Laplacean inductivists, and second I know quite well that distributions 

of microcanonical ensembles in thermodynamics are not frequency-uniform, as Wol-

pert rightly observes, but his observation is besides the point, because the frequency-

uniform distributions to which induction-friendly probability theorists refer are meant 

as epistemic and not as objective probabilities.   

 Having clarified this confusion, let us get to Wolpert's second major argument 

against my diagnosis that the NFL theorems are based on a state-uniform epistemic 

prior. Namely, Wolpert writes (in the 2nd half of his sec. 2) that  

 

"allowing P(f)'s [i.e., the priors over event sequences  G.S.] to vary provides us 
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with a new NFL theorem. In this new theorem, rather than compare the perfor-

mance of two learning algorithms by uniformly averaging over all f's, we compare 

them by uniformly averaging over all P(f)'s".  

 

As Wolpert continues, this uniform averaging results again in an NFL theorem (in  both 

of his versions). This is no wonder  because a uniform average over all objective 

priors over the space of possible event sequences is just a second order version of a 

uniform epistemic prior that results in a uniform expected first order prior. For exam-

ple, suppose that events are binary (0 or 1) and p =def p(1). Assuming  a uniform (2nd 

order) prior density D(p) over all possible (1st order) priors p [0,1], the resulting 

expected 1st order probability of the event 1 is given as 0
1
pD(p)dp = 0|

1
p2/2 = 1/2, 

which is uniform at the 1st order level.  

 Thus, Wolpert's proposed method of averaging over possible prior distributions is 

just another version of a state-uniform prior distribution. In conclusion, Wolpert's at-

tempts to escape the diagnosis that the NFL theorems for prediction depend on a state-

uniform prior do not work, and his claim in the 3rd-last § of section 2 that this diagnosis 

is "simply wrong" seems to apply to itself.  

 Let us now briefly explain the solution to the challenge provided by the NFL theo-

rems proposed by meta-induction. It follows from the dominance results for aMI (recall 

result (3) in sec. 1) that aMI enjoys free lunches over all methods that it dominates. 

How can that be in view of the NFL theorems  is this not a contradiction? My answer 

distinguishes between the long run and the short run perspective. In both perspectives, 

the answer is no. In regard to the long run perspective, the contradiction is only appar-

ent, because the state-uniform probability distribution that Wolpert assumes assigns a 

probability of zero to all worlds (infinite event sequences) in which aMI dominates the 

inferior methods (cf. Schurz 2019, 70f., 241); so these worlds do not affect the proba-

bilistic expectation value of the method's success. But although the state-uniform prior 

of worlds in which aMI meta-induction dominates inferior methods is zero, there are 

many  indeed uncountably many  such worlds and it is precisely in these worlds that 
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intelligent prediction methods can have any chance at all. We should not exclude these 

induction-friendly worlds from the start by assigning a probability of zero to them, 

which means that we should not restrict the epistemic priors to uniform priors. 

 Within the short-run perspective, the defense of meta-induction against the NFL 

challenge is more difficult, because here aMI suffers a small regret. Here we argue as 

follows. What counts are two things: (a) To reach high success in those environments 

which allow for high success by their intrinsic properties (uniformities). This is what 

independent inductive methods do. (b) To protect oneself against high losses (com-

pared to average success) in induction-hostile environments. This is what cautious 

methods do, such as the method "averaging" that always predicts the average of all 

possible event values. The advantage of aMI is that it combines both accomplishments 

 reaching high success rates whenever possible and avoiding high losses; a demon-

stration of this fact by computer simulations is found in Schurz and Thorn (2022, sec. 

5). In conclusion, aMI achieves 'the best of both worlds', although this comes at the 

cost of a small short-run regret of aMI that is acceptable given the mentioned ad-

vantages of aMI. In the case of discrete events with linear loss function, the NFL the-

orems imply that the state-uniform average of this short-run regret is the same for all 

methods; but the advantages (a) and (b) even hold under this induction-hostile assump-

tion. For quadratic loss functions or more induction-friendly priors the short-run ad-

vantages of meta-induction get amplified (cf. Schurz and Thorn 2022, tables 3-8). 

Wolpert's notion of "head-to-head minimax distinctions" in his sec. 4 comes close to 

my proposed solution for the short run: the maximal regret of the methods is minimal 

for aMI, and yet aMI climbs to high successes in regular environments.   

 Finally a remark on Wolpert's nice construction of a competition between two meta-

level algorithms in his sec. 3  a meta-inductive method based on cross-validation, and 

a corresponding meta-anti-inductive method. Both meta-methods have access to the 

same candidate pool of methods; we abbreviate the two meta-level methods as MI and 

MAI. Schurz (2019, 93, 157) calls such competitions prediction tournaments, as op-

posed to prediction games, since in tournaments it is assumed that the preferred meta-
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inductive method cannot access the competing meta-methods. Wolpert observes that 

for every prior P(f) over event sequences for which MI performs well, there exists cor-

responding prior P*(f) for which AMI performs equally well. This is certainly correct, 

but it does not affect the optimality result, because it assumes that MAI is not accessible 

to the method MI, while the optimality theorem applies only to accessible methods. As 

soon as MI is allowed to access AMI's predictions MI's success is granted to converge 

to AMI's success in environments in which AMI is optimal.  


