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Specificity vs probability

We prefer true scientific theories that allow for few possibilities over true ones that
allow for many. Theories must be specific.

By the very nature of probability as a measure of sets, it seems that this preference
cannot be captured by probabilistic confirmation theory.



Specificity and Linda
We know our intuitive preference for specific hypotheses from Linda the bank teller.
Recent confirmation-theoretic solutions to this problem employ the comparative
aspect of confirmation.

In this talk I will provide a solution to the problem of specificifty based on model
selection techniques.
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1 Theories as sets of hypotheses

Theory appraisal concerns the comparison of hypotheses from a given set M. In
statistics, for example, we have

θ̂(Dn,M) = {Hθ : P(Dn|Hθ) is maximal}.

A closer look at theories shows that they are better understood as sets of possible
ways the world can be. Each theory comprises of a set of particular hypotheses:

M = {Hθ : θ ∈ R}.

The specificity of a theory is determined by the size of the region R.



Example theories
We will consider a comparison between the following two theories:

M0 = {Hθ : θ ∈ [0,1]} ,

M1 =

¨

Hθ : θ ∈
�

0,
1

2

�«

,

where M0 is a so-called encompassing theory, and M1 constrained. In this setup
the theories M0 and M1 in some sense overlap so that a comparison of posteriors
is nonsensical, but this can be amended easily.



2 Theory appraisal by model selection

Model selection tools facilitate the comparison of sets of hypotheses on their ability
to accommodate the data. The Bayesian information criterion (BC) compares by
approximated marginal likelihood:

P(Dn|M) ≈ −2 logP(Dn|Hθ̂ ∩M) + d log(n) = BC(M).

When choosing between theories, we trade specificity against fit, expressed in

• the maximum likelihood term P(Dn|Hθ̂ ∩M) and

• the dimensionality term d.

Model selection by Cs provides a probabilistic account of theory appraisal that
factors in specificity, as captured by dimensionality.



A shortcoming of standard Cs
Now consider the theories M0 and M1 of the foregoing and say that the best fitting
hypothesis Hθ̂ is included in both:

θ̂(Dn,M0) = θ̂(Dn,M1) =
1

3
.

Then the maximum likelihood terms are equal, as are the dimensions of the theo-
ries and the number of observations:

d0 = d1,

P(Dn|Hθ̂ ∩M0) = P(Dn|Hθ̂ ∩M1).

In fact, none of the standard Cs (Akaike, Bayesian, Deviance) captures the dif-
ference in specificity between the constrained and encompassing theories M0 and
M1.



3 Adapting BC to capture specificity

We can adapt the Cs to incorporate this aspect of specificity. We illustrate this for
the BC.

P(Hθ|M1)dθ =
1

P(M1|M0)
P(Hθ|M0)dθ.

To derive the BC, we assume a prior over M1 that is the truncated version of the
prior over M0. The normalisation is the relative size of the theory M1 to M0.



Marginal likelihood for increasing sample size
The constrained theory M1 starts off with its prior probability closer to the maximum
likelihood point than the encompassing model M0.

At any point the ratio of the priors expresses the ratio in the size of the two theories.



Marginal likelihood for increasing sample size
With increasing sample size n the posterior probability accumulates around the
maximum likelihood point. But the theory M1 begins with a head start.

Therefore the predictions from theory M1 are more accurate than those of theory
M0, and its marginal likelihood is higher.



Limiting marginal likelihood ratio
The marginal likelihoods of M0 and M1 are dominated by what goes on in its imme-
diate vicinity. If θ̂ lies within M1, we find that

lim
n→∞

P(Dn|M1)

P(Dn|M0)
=

1

P(M1|M0)
.

And if θ̂ lies outside M1, we have

lim
n→∞

P(Dn|M1)

P(Dn|M0)
= 0.

So the ratio of marginal likelihoods tends to the ratio of priors at the maximum
likelihood point.



Evaluation of the result
The above reveals what must come out of an improved BC approximation. Rather
than deriving this so-called prior-adapted BC in full, we concentrate on the inter-
pretation of the additional term.

The term by which the marginal likelihoods differ is actually the relative size of the
constrained model: it expresses a difference in specificity.



Derivation of the prior-adapted BC

In the original derivation of Schwarz (1978), it is shown that

logP(Dn|M) = logP(Dn|Hθ̂ ∩M)−
d

2
log(n) + logP(Hθ̂|M)

+(d/2) log(2π)−
1

2
log ||+O
�

1
p
n

�

,

where  is the expected Fisher information matrix for a single observation. Following
Kass and Wasserman (1992), we can eliminate the terms of order O(1) by a clever
choice of prior:

logP(Hθ̂) =
1

2
log || −

d

2
log(2π).

This prior can be justified independently: it expresses that we have a roughly cor-
rect idea of where the maximum likelihood point will be.



Retaining the prior term
The key idea of the prior-adapted BIC is that this last step in the original derivation
must be omitted. The effect of the truncated prior can be found back in the prior
probability density. This motivates the proposal of the prior-adapted BC:

PBC(M) = −2 logP(Dn|Hθ̂ ∩M) + d log(n)− 2 logP(Hθ̂|M).

Because the priors over M0 and M1 differ by a factor P(M1|M0), we find for Hθ̂ in M1
that

PBC(M0)− PBC(M1) = −2 logP(M1|M0) > 0.

The terms pertaining to likelihood and dimensionality do not differ. If Hθ̂ lies outside
M1, then the difference in likelihood terms dominates the comparison of PBC.



And the other O(1) terms?
While the other terms of this order in the derivation of Schwarz do not disappear,
they are both equal for models that differ by constraints.

• The term d
2 log(2π) is clearly the same, as it only depends on the dimension

which is equal for the encompassing and constrained model.

• The term 1
2 log || is also the same. It is the expectation of the second order

derivative of the likelihood of a single observation, evaluated at the maximum
likelihood point. But the models have exactly the same likelihood function.

One worry may be that the accuracy of Schwarz’s approximation is different for the
models. But nothing in that approximation hinges on the exact region of admissible
parameter values.



Some more detail on the derivation
The original derivation employs the so-called Laplacian method for integrals on a
Taylor expansion of the function g(θ) = P(Hθ|M)P(Dn|Hθ ∩M), as it appears in the
marginal likelihood. This leads to

P(D|M) = exp
�

g(θ̃)
�

(2π)
d
2 |A|−

1
2 +O

�

1

n

�

,

with θ̃ the value where the function g(θ) is maximal. It is assumed that g(θ̃) can
be approximated by g(θ̂). The remaining terms −d

2 log(n)−
1
2 log || result from

|A| = nd||+O
�

1
p
n

�

.

This approximation is based on two further assumptions: the observations in Dn

are independent and identically distributed, and the second derivative of g(θ) is
dominated by the likelihood factor, so that we can omit P(Hθ|M) from g(θ).



4 Specificity and model selection

There are a number of model selection tools available, each with their own motiva-
tion:

BIC We choose the theory with the largest approximated marginal likelihood.

AIC We choose the theory whose approximated distance to the hypothesized truth
is minimal.

DIC We choose the theory that has the best expected predictive performance un-
der a particular loss function.

A very attractive feature of the information criteria is that they independently arrive
at very similar expressions:

C ∼ −Fit[P(Dn|Hθ̂)]− Specificity[−d logn]



Dimension and size as specificity
The dependence on the dimension d drops out of the approximation methods for
all the Cs. It is not put in to express specificity, but interpreted as an expression
of specificity afterwards.

−d logn ∼
1

# theoretical possibilities
= Specificity(M)

For theories differing merely in size and not in dimension, the very same intuition
can be applied. For the BC we found:

P(M|M0) ∼
1

# theoretical possibilities
= Specificity?(M)

Both specificity terms concern differences of theory size, albeit at different orders
of magnitude.



Simplicity, size, specificity
Similar refinements are available, or in the making, for the AC and the DC. We
see that specificity concerns size and not just dimensionality.

• This answers to the problem of specificity. Probabilistic accounts of scientific
inference can accommodate our preference for high specificity as well as high
probability.

• It also throws new light on the case of Linda the bank teller: people prefer the
feminist bank teller because it is more specific, or in another word simpler; it
therefore has a higher marginal likelihood.

Recall that we can define theories M0 and M1 so that they are disjunct sets. So
specificity can be expressed in high posterior probability.



5 The sub-family problem

Some things remain awkward about model selection: we can gerrymander the
parameterisation of the theory in order to improve our fit while keeping the number
of parameters low.

This is the problem of accommodation, or the sub-family problem in the context of
curve-fitting: we can always come up with a smart parameterisation of the space
of possible curves that renders a good fit at little cost.



The sensitivity of the estimations
The solution for this problem lies in testing the estimation for sensitivity to slight
changes in the data: if for small changes to the data the estimations vary wildly,
this tells against the family of functions used to fit the curve.

logP(Dn|M) = logP(Dn|Hθ̂ ∩M)−
d

2
log(n) + logP(Hθ̂|M)

+(d/2) log(2π)−
1

2
log ||+O
�

1
p
n

�

,

As it turns out, a measure of sensitivity is already present in the BC approximation,
as the so-called Fisher information log ||.



Solving the problem?
Parallel to existing tools employing minimum description length (MDL), one might
develop adapted Cs that compare different parameterisations of the same model.

C+ ∼ −Fit[P(Dn|Hθ̂)]− Specificity [−d logn]
−Specificity? [P(M|M0)] + Sensitivity[log ||]

This solves the problem of accommodation if we indeed have an independent
ground for the way we label and structure our data: the latter determines the
sensitivity of the theory.



Thank you

The slides for this talk will be available at http://www.philos.rug.nl/∼romeyn. For
comments and questions, email j.w.romeijn@rug.nl.


