Cognition and conditionals

Niki Pfeifer

in collaboration with
Leonhard Kratzer, Andy Fugard \& Gernot D. Kleiter

Department of Psychology
University of Salzburg
www.users.sbg.ac.at/~pfeifern/

Outline

- Conditionals in psychology
- Indicative conditionals
- Uncertain conditionals
- Mental probability logic
- Wasons selection task
- Truth table task
- Paradoxes of the material conditional
- Conclusions

Conditionals in psychology: Indicative conditionals

Three prominent psychological predictions of how people interpret "If A, then B ":

- Material conditional, $A \supset B$
- Conjunction, $A \wedge B$
- Conditional event, $B \mid A$

Conditionals in psychology: Indicative conditionals

Three prominent psychological predictions of how people interpret "If A, then B ":

- Material conditional, $A \supset B$
- Conjunction, $A \wedge B$
- Conditional event, $B \mid A$

			Material conditional	Conjunction	Conditional event
s_{1}	true	true	true	true	$B \mid A$
s_{2}	true	false	false	false	true
s_{3}	false	true	true	false	false
s_{4}	false	false	true	false	undetermined

Conditionals in psychology: Indicative conditionals

Three prominent psychological predictions of how people interpret "If A, then B ":

- Material conditional, $A \supset B$
- Conjunction, $A \wedge B$
- Conditional event, $B \mid A$

			Material conditional	Conjunction	Conditional event
s_{1}	true	true	true	true	$B \mid A$
s_{2}	true	false	false	false	true
s_{3}	false	true	true	false	false
s_{4}	false	false	true	false	undetermined

Conditionals in psychology: Uncertain conditionals

Conditionals in psychology: Uncertain conditionals

Probabilistic extension
of the mental model theory
Johnson-Laird et al.

Conditionals in psychology: Uncertain conditionals

Probabilistic extension
of the mental model theory
Johnson-Laird et al.

Conditionals in psychology: Uncertain conditionals

The material conditional is not a genuine conditional

$$
(A \supset B) \quad \Leftrightarrow \quad(\neg A \vee B)
$$

Probabilistic extension
of the mental model theory
Johnson-Laird et al.

Conditionals in psychology: Uncertain conditionals

Probabilistic extension
of the mental model theory
Johnson-Laird et al.

Conditionals in psychology: Uncertain conditionals

Theoretical problems solved:
No paradoxes of the material conditional:
From $P(B)=x$ infer $P(B \mid A) \in[0,1]$

Probabilistic extension
of the mental model theory
Johnson-Laird et al.

Conditionals in psychology: Uncertain conditionals

Theoretical problems solved:
No paradoxes of the material conditional:
From $P(B)=x$ infer $P(B \mid A) \in[0,1]$
But: from $P(B)=x$ infer $P(A \supset B) \in[x, 1]$

Probabilistic extension
of the mental model theory
Johnson-Laird et al.

Conditionals in psychology: Uncertain conditionals

The conditional event $B \mid A$ is a genuine conditional!
Probabilistic extension
of the mental model theory
Johnson-Laird et al.

Conditionals in psychology: Uncertain conditionals

Probabilistic extension
of the mental model theory
Johnson-Laird et al.

Conditionals in psychology: Uncertain conditionals

Probabilistic extension
of the mental model theory
Johnson-Laird et al.

Conditionals in psychology: Uncertain conditionals

Mental probability logic

- embedded in a probability logic framework

Mental probability logic

- embedded in a probability logic framework
- the indicative "if A, then B " is interpreted as a nonmonotonic conditional:

Mental probability logic

- embedded in a probability logic framework
- the indicative "if A, then B " is interpreted as a nonmonotonic conditional:
- A, normally B iff $P(B \mid A)=$ high

Mental probability logic

- embedded in a probability logic framework
- the indicative "if A, then B " is interpreted as a nonmonotonic conditional:
- A, normally B iff $P(B \mid A)=$ high
- competence theory

Mental probability logic

- embedded in a probability logic framework
- the indicative "if A, then B " is interpreted as a nonmonotonic conditional:
- A, normally B iff $P(B \mid A)=$ high
- competence theory
- the uncertainty of the conclusion is inferred deductively from the uncertainty of the premises, e.g.:

Mental probability logic

- embedded in a probability logic framework
- the indicative "if A, then B " is interpreted as a nonmonotonic conditional:
- A, normally B iff $P(B \mid A)=$ high
- competence theory
- the uncertainty of the conclusion is inferred deductively from the uncertainty of the premises, e.g.:
premises conclusion

Mental probability logic

- embedded in a probability logic framework
- the indicative "if A, then B " is interpreted as a nonmonotonic conditional:
- A, normally B iff $P(B \mid A)=$ high
- competence theory
- the uncertainty of the conclusion is inferred deductively from the uncertainty of the premises, e.g.:

$$
\stackrel{\overbrace{}}{P(B \mid A)=x, \quad P(A)=y} \text { premises } \models \overbrace{P(B) \in[x y, x y+1-y]}^{\text {conclusion }}
$$

- premises are evaluated by point values, intervals or second order probability distributions

Mental probability logic

- embedded in a probability logic framework
- the indicative "if A, then B " is interpreted as a nonmonotonic conditional:
- A, normally B iff $P(B \mid A)=$ high
- competence theory
- the uncertainty of the conclusion is inferred deductively from the uncertainty of the premises, e.g.:

$$
\stackrel{\overbrace{}}{P(B \mid A)=x, \quad P(A)=y} \text { premises } \models \overbrace{P(B) \in[x y, x y+1-y]}^{\text {conclusion }}
$$

- premises are evaluated by point values, intervals or second order probability distributions
- coherence

Coherence

- de Finetti, and \{Lad, Walley, Scozzafava, Coletti, Gilio,... \}
- degrees of belief
- complete algebra is not required
- conditional probability, $P(B \mid A)$, is primitive
- zero probabilities are exploited to reduce the complexity
- imprecision
- provides semantics for System P

Wasons selection task

Wasons selection task

If there is a vowel on the one side, then there is an even number on the other side.

Wasons selection task

If there is a vowel on the one side, then there is an even number on the other side .

Wasons selection task

If there is a vowel on the one side (A), then there is an even number on the other side (B).

A

$\neg A$

B

$\neg B$

Wasons selection task

- 46% choose both, the A - and the B-card (Wason \& Johnson-Laird, 1972)

Wasons selection task

- 46% choose both, the A - and the B-card (Wason \& Johnson-Laird, 1972)
- 33% choose the A-card (Wason \& Johnson-Laird, 1972)

Wasons selection task

- 46\% choose both, the A - and the B-card (Wason \& Johnson-Laird, 1972)
- 33% choose the A-card (Wason \& Johnson-Laird, 1972)
- 4% choose both, the A - and the $\neg B$-card (Wason \& Johnson-Laird, 1972)

Wasons selection task

If there is a vowel on the one side (A), then there is an even number on the other side (B).

- 46% choose both, the A - and the B-card (Wason \& Johnson-Laird, 1972)
- 33% choose the A-card (Wason \& Johnson-Laird, 1972)
- 4\% choose both, the A - and the $\neg B$-card (Wason \& Johnson-Laird, 1972)

Wasons selection task

If there is a vowel on the one side (A), then there is an even number on the other side (B).

- 46% choose both, the A - and the B-card (Wason \& Johnson-Laird, 1972)
- 33% choose the A-card (Wason \& Johnson-Laird, 1972)

Wasons selection task

If there is a vowel on the one side (A), then there is an even number on the other side (B).

- 46% choose both, the A - and the B-card (Wason \& Johnson-Laird, 1972)
- 33% choose the A-card (Wason \& Johnson-Laird, 1972)

Wasons selection task

If there is a vowel on the one side (A), then there is an even number on the other side (B).

- 46% choose both, the A - and the B-card (Wason \& Johnson-Laird, 1972)
- 33% choose the A-card (Wason \& Johnson-Laird, 1972)

Wasons selection task

If there is a vowel on the one side (A), then there is an even number on the other side (B).

Wasons selection task

If there is a vowel on the one side (A), then there is an even number on the other side (B).

Wasons selection task

If there is a vowel on the one side (A), then there is an even number on the other side (B).

Truth table task

Task AA, SP condition

If there is a circle on the screen, then the circle is black.

Does the shape on the screen speak for the assertion in the box?

speaks against

Task AA, PS condition

If there is a black shape on the screen, then it is a circle.

Does the shape on the screen speak for the assertion in the box?

speaks against

Task AN, SP condition

If there is a circle on the screen, then the circle is black.

Does the shape on the screen speak for the assertion in the box?

speaks against neither/nor speaks for

Task NA, SP condition

If there is a circle on the screen, then the circle is black.

Does the shape on the screen speak for the assertion in the box?

speaks against

Task NN, SP condition

If there is a circle on the screen, then the circle is black.

Does the shape on the screen speak for the assertion in the box?

speaks against neither/nor speaks for

Design

- Two conditions: SP $\left(n_{1}=18\right)$ and PS ($\left.n_{2}=18\right)$
- 16 target tasks: 4 conditionals $\times 4$ truth table cases
- Order of tasks:

Conditional in box	Shape on screen	Task type
If circle, then black	\bullet	target AA
If circle, then black	\circ	target AN
If circle, then black	$\mathbf{\Delta}$	target NA
If circle, then black	Δ	target NN

Design

- Two conditions: SP $\left(n_{1}=18\right)$ and PS ($\left.n_{2}=18\right)$
- 16 target tasks: 4 conditionals $\times 4$ truth table cases
- Order of tasks:

Conditional in box	Shape on screen	Task type
If circle, then black	\bullet	target AA
If circle, then black	\circ	target AN
If circle, then black	Δ	target NA
If circle, then black	Δ	target NN
counterfactual	broken screen	filler item

Design

- Two conditions: SP $\left(n_{1}=18\right)$ and PS ($\left.n_{2}=18\right)$
- 16 target tasks: 4 conditionals $\times 4$ truth table cases
- Order of tasks:

Conditional in box	Shape on screen	Task type
If circle, then black	\bullet	target AA
If circle, then black	0	target AN
If circle, then black	$\mathbf{\Delta}$	target NA
If circle, then black	Δ	target NN
counterfactual	broken screen	filler item
If circle, then white	\bullet	target AN
If circle, then white	0	target AA
If circle, then white	$\mathbf{\Delta}$	target NN
If circle, then white	Δ	target NA
counterfactual	broken screen	filler item
\vdots	\vdots	\vdots
If triangle, then white	Δ	target AA

Results: Mean Response Percentages

Group	Response	Task Type			
		AA	AN	NA	NN
SP	speaks against	2.78	86.11	30.56	22.22
	neither/nor	4.17	11.11	$\mathbf{6 1 . 1 1}$	$\mathbf{7 6 . 3 9}$
	speaks for	93.06	2.78	8.33	1.39

Representation as a conditional event $(\cdot \mid \cdot)$

Results: Mean Response Percentages

Group	Response	Task Type			
		AA	AN	NA	NN
SP	speaks against	2.78	86.11	30.56	22.22
	neither/nor	4.17	11.11	$\mathbf{6 1 . 1 1}$	$\mathbf{7 6 . 3 9}$
	speaks for	93.06	2.78	8.33	1.39
PS	speaks against	0.00	91.67	58.33	47.22
	neither/nor	5.56	6.94	$\mathbf{2 6 . 3 9}$	$\mathbf{5 0 . 0 0}$
	speaks for	94.44	1.39	15.28	2.78

Representation as a conditional event $(\cdot \mid \cdot)$

Results: Mean Response Percentages

Group	Response	Task Type			
		AA	AN	NA	NN
SP	speaks against	2.78	86.11	$\mathbf{3 0 . 5 6}$	$\mathbf{2 2 . 2 2}$
	neither/nor	4.17	11.11	61.11	76.39
	speaks for	93.06	2.78	8.33	1.39
PS	speaks against	0.00	91.67	58.33	$\mathbf{4 7 . 2 2}$
	neither/nor	5.56	6.94	26.39	50.00
	speaks for	94.44	1.39	15.28	2.78

Representation as a conjunction $(\cdot \wedge \cdot)$

Results: Mean Response Percentages

Group	Response	Task Type			
		AA	AN	NA	NN
SP	speaks against	2.78	86.11	30.56	22.22
	neither/nor	4.17	11.11	61.11	76.39
	speaks for	93.06	2.78	$\mathbf{8 . 3 3}$	$\mathbf{1 . 3 9}$
PS	speaks against	0.00	91.67	58.33	47.22
	neither/nor	5.56	6.94	26.39	50.00
	speaks for	94.44	1.39	$\mathbf{1 5 . 2 8}$	$\mathbf{2 . 7 8}$

Representation as a material conditional (• •)

Results: Mean Response Percentages

Group	Response	Task Type			
		AA	AN	NA	NN
SP	speaks against	2.78	86.11	30.56	22.22
	neither/nor	4.17	11.11	61.11	76.39
	speaks for	93.06	2.78	8.33	1.39
PS	speaks against	0.00	91.67	$\mathbf{5 8 . 3 3}$	47.22
	neither/nor	5.56	6.94	26.39	50.00
	speaks for	94.44	1.39	15.28	2.78

Not yet clear what's going on here.

Paradoxes of the material conditional

Two paradoxes of the material conditional (conditional introduction):
"If A , then B " interpreted as " $A \supset B$ "

P $2+2=4$
log. valid
\mathfrak{C} If the moon is made of green cheese, then $2+2=4$

$$
B+A \supset B
$$

Two paradoxes of the material conditional (conditional introduction):
"If A, then B " interpreted as " $A \supset B$ "
\mathfrak{P} Not: The moon is made of green cheese
log. valid
\mathfrak{C} If the moon is made of green cheese, then $2+2=4$

$$
\neg A \vdash A \supset B
$$

Two paradoxes of the material conditional (conditional introduction):
"If A, then B " interpreted as " $A \supset B$ "
\mathfrak{P} Not: The moon is made of green cheese
\mathfrak{C} If the moon is made of green cheese, then $2+2=4$
Mental model theory postulates that subjects represent "basic conditionals" "If A, then B " as

- implicit mental models:

\ldots truth conditions of the conjunction, $A \wedge B$

Two paradoxes of the material conditional (conditional introduction):
"If A , then B " interpreted as " $A \supset B$ "
\mathfrak{P} Not: The moon is made of green cheese
$\mathfrak{C} \quad$ If the moon is made of green cheese, then $2+2=4$
Mental model theory postulates that subjects represent "basic conditionals" "If A, then B " as

- implicit mental models
- explicit mental models:

A	B
not- A	B
not- A	not- B

\ldots truth conditions of the material conditional, $A \supset B$

Two paradoxes of the material conditional, $A \supset B$

Example (Paradox 1)
$B \therefore$ If A, then B

Premise		Conclusion	
B	\therefore	$A \supset B$	
$P(B)=x$	\therefore	$P(A \supset B) \in[x, 1]$	
$P(B)=x$	\therefore	$P(A \wedge B) \in[0, x]$	(prob. informative)
$P(B)=x$	\therefore	$P(B \mid A) \in[0,1]$	(prob. informative)
(prob. non-informative)			

Two paradoxes of the material conditional, $A \supset B$

Example (Paradox 1)
$B \therefore$ If A, then B
$B \therefore$ If A, then not- B

Premise		Conclusion	
B	\therefore	$A \supset B$	
$P(B)=x$	\therefore	$P(A \supset B) \in[x, 1]$	(logically valid)
$P(B)=x$	\therefore	$P(A \wedge B) \in[0, x]$	(prob. informative)
$P(B)=x$	\therefore	$P(B \mid A) \in[0,1]$	(prob. non-informative)
B	\therefore	$A \supset \neg B$	
$P(B)=x$	\therefore	$P(A \supset \neg B) \in[1-x, 1]$	(not logically valid)
$P(B)=x$	\therefore	$P(A \wedge \neg B) \in[0,1-x]$	(prob. informative)
$P(B)=x$	\therefore	$P(\neg B \mid A) \in[0,1]$	(prob. non-informative)

Two paradoxes of the material conditional, $A \supset B$

Example (Paradox 1)
$B \therefore$ If A, then B
$B \therefore$ If A, then not- B

Premise	Conclusion	
B	$A \supset B$	(logically valid)
$P(B)=1$	$P(A \supset B)=1$	(prob. informative)
$P(B)=1$	$P(A \wedge B) \in[0,1]$	(pract. non-informative)
$P(B)=1$	$P(B \mid A) \in[0,1]$	(prob. non-informative)
B	$A \supset \neg B$	(not logically valid)
$P(B)=1$	$P(A \supset \neg B) \in[0,1]$	(pract. non-informative)
$P(B)=1$	$P(A \wedge \neg B)=0$	(prob. informative)
$P(B)=1$	$P(\neg B \mid A) \in[0,1]$	(prob. non-informative)

Two paradoxes of the material conditional, $A \supset B$

Example (Paradox 2)
Not- $A \therefore$ If A, then B

Premise		Conclusion	
$\neg A$	\therefore	$A \supset B$	
$P(\neg A)=x$	\therefore	$P(A \supset B) \in[x, 1]$	(pogically valid)
$P(\neg A)=x$	\therefore	$P(A \wedge B) \in[0,1-x]$	(prob. informative)
$P(\neg A)=x$	\therefore	$P(B \mid A) \in[0,1]$	(prob. non-informative)

Two paradoxes of the material conditional, $A \supset B$

Example (Paradox 2)
Not- A If A, then B
Not- $A \therefore$ If A, then not- B

Premise		Conclusion	
$\neg A$	\therefore	$A \supset B$	
$P(\neg A)=x$	\therefore	$P(A \supset B) \in[x, 1]$	(logically valid)
$P(\neg A)=x$	\therefore	$P(A \wedge B) \in[0,1-x]$	(prob. informative)
$P(\neg A)=x$	\therefore	$P(B \mid A) \in[0,1]$	(prob. informative)
$\neg A$	\therefore	$A \supset \neg B$	(logically valid)
$P(\neg A)=x$	\therefore	$P(A \supset \neg B) \in[x, 1]$	(prob. informative)
$P(\neg A)=x$	\therefore	$P(A \wedge \neg B) \in[0,1-x]$	(prob. informative)
$P(\neg A)=x$	\therefore	$P(\neg B \mid A) \in[0,1]$	(prob. non-informative)

Experimental results

Paradox 1: $\quad B \quad \therefore$ If A, then B

Simon works in a factory that produces playing cards. He is responsible for what is printed on the cards.
On each card, there is a shape (triangle, square, ...) of a certain color (green, blue, ...), like:

- green triangle, green square, green circle, ...
- blue triangle, blue square, ...
- red triangle, ...

Paradox 1: $\quad B \quad \therefore$ If A, then B

Simon works in a factory that produces playing cards. He is responsible for what is printed on the cards.
On each card, there is a shape (triangle, square, ...) of a certain color (green, blue, ...), like:

- green triangle, green square, green circle, ...
- blue triangle, blue square, ...
- red triangle, ...

Imagine that a card got stuck in the printing machine. Simon cannot see what is printed on this card. Since Simon did observe the card production during the whole day, he is

A Pretty sure: There is a square on this card.
Considering A, how certain can Simon be that the following sentence is true?
If there is a red shape on this card, then there is a square on this card.

Paradox 1: $\quad B \quad \therefore$ If A, then B

A Pretty sure: There is a square on this card.
Considering A, how certain can Simon be that the following sentence is true?
If there is a red shape on this card, then there is a square on this card.
Considering A, can Simon infer-at all-how certain he can be, that the sentence in the box is true?
\square NO, Simon cannot infer his certainty.
\square YES, Simon can infer his certainty.

Paradox 1: $\quad B \quad \therefore$ If A, then B

A Pretty sure: There is a square on this card.
Considering A, how certain can Simon be that the following sentence is true?
If there is a red shape on this card, then there is a square on this card.
Considering A, can Simon infer-at all-how certain he can be, that the sentence in the box is true?
\square NO, Simon cannot infer his certainty.
\square YES, Simon can infer his certainty.
In case you ticked YES, please fill in
\square Simon can be pretty sure that the sentence in the box is false.
\square Simon can be pretty sure that the sentence in the box is true.

Paradox $1\left(n_{1}=16\right)$

$\square \quad \& \quad \square: B \quad \therefore \quad A \rightarrow B$

Paradox $1\left(n_{3}=19\right)$

$\square \quad \& \quad \square: B \quad \therefore \quad A \rightarrow B$

negated Paradox $1\left(n_{3}=19\right)$

$\square \quad \& \quad \square: B \quad \therefore \quad A \rightarrow \neg B$

Paradox $2\left(n_{2}=15\right)$

$\square \quad \& \quad \square: \neg A \quad \therefore \quad A \rightarrow B$

Paradox $2\left(n_{4}=20\right)$

negated Paradox $2\left(n_{2}=15\right)$

■ \& $\square: \neg A \quad \therefore \quad A \rightarrow \neg B$

negated Paradox $2\left(n_{4}=20\right)$

■ \& $\square: \neg A \quad \therefore \quad A \rightarrow \neg B$

Complement

If A, then $B \quad \therefore$ If A, then $\neg B$

Premise	Conclusion		
A $D B$	\therefore	$A \supset \neg B$	
$P(A \supset B)=x$	\therefore	$P(A \supset \neg B) \in[1-x, 1]$	(not logically valid)
$P(A \wedge B)=x$	\therefore	$P(A \wedge \neg B) \in[0,1-x]$	(prob. informative) informative)
$P(B \mid A)=x$	\therefore	$P(\neg B \mid A)=1-x$	(prob. informative)

Complement

If A, then $B \quad \therefore$ If A, then $\neg B$

Premise		Conclusion	
$A \supset B$	\therefore	$A \supset \neg B$	
$P(A \supset B)=x$	\therefore	$P(A \supset \neg B) \in[1-x, 1]$	(not logically valid)
$P(A \wedge B)=x$	\therefore	$P(A \wedge \neg B) \in[0,1-x]$	(prob. informative)
$P(B \mid A)=x$	\therefore	$P(\neg B \mid A)=1-x$	(prob. informative)
$A \supset B$	\therefore	$A \supset \neg B$	(not logically valid)
$P(A \supset B)=.99$	\therefore	$P(A \supset \neg B) \in[.01,1]$	(pract. non-inform.)
$P(A \wedge B)=.99$	\therefore	$P(A \wedge \neg B) \in[0, .01]$	(prob. informative)
$P(B \mid A)=.99$	\therefore	$P(\neg B \mid A)=.01$	(prob. informative)

Complement $\left(n_{3}+n_{4}=39\right)$

$$
A \rightarrow B \quad \therefore \quad A \rightarrow \neg B
$$

negated Complement $\left(n_{3}+n_{4}=39\right)$

$$
A \rightarrow B \quad \therefore \quad A \rightarrow B
$$

Paradox 3: Monotonicity (Premise strengthening)

"If A, then B " interpreted as " $A \supset B$ "
\mathfrak{P}_{1} If the animal is a bird, then it can fly
log. valid
\mathfrak{C} If the animal is a bird and a penguin, then it can fly

$$
A \supset B+A \wedge C \supset B
$$

Cautious Monotonicity

"If A, then B " interpreted as " $A \supset B$ "
\mathfrak{P}_{1} If the animal is a bird, then it can fly
\mathfrak{P}_{2} If the animal is a bird, then it is a penguin
$\mathfrak{C} \quad$ If the animal is a bird and a penguin, then it can fly

The second premise "blocks" the conclusion

Monotonicity $\left(n_{3}=19\right)$

$\square: A \rightarrow B \quad \therefore \quad C \wedge A \rightarrow B$
$\square: A \rightarrow B \quad \therefore \quad A \wedge C \rightarrow B$

negated Monotonicity $\left(n_{3}=19\right)$

$$
\begin{array}{lll}
\square: A \rightarrow B & \therefore & C \wedge A \rightarrow \neg B \\
\square: A \rightarrow B & \therefore & A \wedge C \rightarrow \neg B
\end{array}
$$

Cautious Monotonicity $\left(n_{3}=19\right)$

$\square: A \rightarrow B, A \rightarrow C \quad \therefore \quad A \wedge C \rightarrow B$
$\square: A \rightarrow C, A \rightarrow B \quad \therefore \quad A \wedge C \rightarrow B$

negated Cautious Monotonicity $\left(n_{3}=19\right)$

$\square: A \rightarrow B, A \rightarrow C \quad \therefore \quad A \wedge C \rightarrow \neg B$
$\square: A \rightarrow C, A \rightarrow B \quad \therefore \quad A \wedge C \rightarrow \neg B$

Conclusions

- Framing human inference in coherence based probability logic
- new predictions (probabilistic (non-)informativeness)
- new experimental paradigms
- incomplete probabilistic knowledge leads to probability-intervals
- investigating argument forms that differentiate

Conclusions

- Framing human inference in coherence based probability logic
- new predictions (probabilistic (non-)informativeness)
- new experimental paradigms
- incomplete probabilistic knowledge leads to probability-intervals
- investigating argument forms that differentiate
- Most participants interpret conditionals as conditional events, but. . .

Conclusions

- Framing human inference in coherence based probability logic
- new predictions (probabilistic (non-)informativeness)
- new experimental paradigms
- incomplete probabilistic knowledge leads to probability-intervals
- investigating argument forms that differentiate
- Most participants interpret conditionals as conditional events, but. . .
- ... differences in interpretations may indicate intra- and interindividual differences

Conclusions

- Framing human inference in coherence based probability logic
- new predictions (probabilistic (non-)informativeness)
- new experimental paradigms
- incomplete probabilistic knowledge leads to probability-intervals
- investigating argument forms that differentiate
- Most participants interpret conditionals as conditional events, but. . .
- ... differences in interpretations may indicate intra- and interindividual differences
- Alternative interpretations, beyond $\cdot \mid \cdot, \supset \cdot$, and $\cdot \wedge \cdot$?

Acknowledgments

- EUROCORES programme LogICCC "The Logic of Causal and Probabilistic Reasoning in Uncertain Environments" (European Science Foundation)
- FWF project "Mental probability logic" (Austrian Research Fonds)

Papers to download: www.users.sbg.ac.at/~pfeifern/

Appendix

Design Experiment 1

- Two conditions: Group $1\left(n_{1}=16\right)$ and Group $2\left(n_{2}=15\right)$
- Tasks: Each group 20 tasks (10 arguments affirmative \& negated)
- Group 1: Five Modus Ponens tasks and five Paradox 1 tasks with varying uncertainties of the categorical premises (" pretty sure" / "absolutely certain",e.g.);

Modus Ponens: from If A, then B and A infer B
Paradox 1: from B infer If A, then B

- Group 2: Five Modus Ponens tasks and five Paradox 2 tasks with varying uncertainties of the categorical premises (" pretty sure" / "absolutely certain",e.g.);

Modus Ponens: from $\operatorname{If} A$, then B and A infer B
Paradox 2: from $\neg A$ infer If A, then B

Design Experiment 2

- Two conditions: Group $1\left(n_{3}=19\right)$ and Group $2\left(n_{4}=20\right)$
- Tasks: Each group 20 tasks (affirmative \& negated)

Group 1	informative	not informative
	COMPLEMENT	IRRELEVANCE
	CAUT. MONOTONICITY I/II	MONOTONICITY I/II
	MODUS PONENS I/II	PARADOX 1 I/II
Group 2	informative	not informative
	COMPLEMENT	IRRELEVANCE
	MODUS TOLLENS I/II	CONTRAPOS. I/II
	dwr MONOTONICITY I/II	PARADOX 2 I/II

System P: Rationality postulates for nonmonotonic reasoning (Kraus, Lehmann \& Magidor, 1990)

Reflexivity (axiom): $\alpha \sim \alpha$
Left logical equivalence:

$$
\text { from } \models \alpha \equiv \beta \text { and } \alpha \sim \gamma \text { infer } \beta \nsim \gamma
$$

Right weakening:
from $\models \alpha \supset \beta$ and $\gamma \sim \alpha$ infer $\gamma \sim \beta$
Or: \quad from $\alpha \nsim \gamma$ and $\beta \nsim \gamma$ infer $\alpha \vee \beta \sim \gamma$
Cut: \quad from $\alpha \wedge \beta \sim \gamma$ and $\alpha \sim \beta$ infer $\alpha \sim \gamma$
Cautious monotonicity:
from $\alpha \sim \beta$ and $\alpha \sim \gamma$ infer $\alpha \wedge \beta \sim \gamma$
And (derived rule): from $\alpha \sim \beta$ and $\alpha \sim \gamma$ infer $\alpha \sim \beta \wedge \gamma$

System P: Rationality postulates for nonmonotonic

 reasoning (Kraus, Lehmann \& Magidor, 1990)Reflexivity (axiom): $\alpha \sim \alpha$
Left logical equivalence:
from $\models \alpha \equiv \beta$ and $\alpha / \sim \gamma$ infer $\beta \nsim \gamma$
Right weakening:
from $\models \alpha \supset \beta$ and $\gamma \sim \alpha$ infer $\gamma \sim \beta$
Or: \quad from $\alpha \nsim \gamma$ and $\beta \nsim \gamma$ infer $\alpha \vee \beta \nsim \gamma$
Cut: \quad from $\alpha \wedge \beta \sim \gamma$ and $\alpha \sim \beta$ infer $\alpha \sim \gamma$
Cautious monotonicity:
from $\alpha \sim \beta$ and $\alpha \sim \gamma$ infer $\alpha \wedge \beta \sim \gamma$
And (derived rule): from $\alpha \sim \beta$ and $\alpha \sim \gamma$ infer $\alpha \sim \beta \wedge \gamma$

System P: Rationality postulates for nonmonotonic reasoning (Kraus, Lehmann \& Magidor, 1990)

Reflexivity (axiom): $\alpha \nsim \alpha$
Left logical equivalence:

$$
\text { from } \models \alpha \equiv \beta \text { and } \alpha \sim \gamma \text { infer } \beta \nsim \gamma
$$

Right weakening:
from $\models \alpha \supset \beta$ and $\gamma \sim \alpha$ infer $\gamma \sim \beta$
Or: \quad from $\alpha \nsim \gamma$ and $\beta \nsim \gamma$ infer $\alpha \vee \beta \sim \gamma$
Cut: \quad from $\alpha \wedge \beta \sim \gamma$ and $\alpha \sim \beta$ infer $\alpha \sim \gamma$
Cautious monotonicity:
from $\alpha \sim \beta$ and $\alpha \sim \gamma$ infer $\alpha \wedge \beta \sim \gamma$
And (derived rule): from $\alpha \sim \beta$ and $\alpha \sim \gamma$ infer $\alpha \sim \beta \wedge \gamma$

Semantics for System P

- Normal world semantics (Kraus, Lehmann \& Magidor '90)
- Possibility semantics: $\alpha \sim \beta$ iff $\Pi(A \wedge B)>\Pi(A \wedge \neg B)$ (e.g., Benferhat, Dubois \& Prade '97)
- Empirical support: Da Silva Neves, Bonnefon, \& Raufaste ('02), Benferhat, Bonnefon, Da Silva Neves ('05)
- Inhibition nets (Leitgeb '01, '04)
- Probability semantics
- Infinitesimal: $\alpha \sim \beta$ iff $P(\beta \mid \alpha)=1-\epsilon$ (e.g., Adams '75)
- Noninfinitesimal: $\alpha \sim \beta$ iff $P(\beta \mid \alpha)>.5$ (e.g., Gilio '02; Biazzo, Gilio, Lukasiewicz, Sanfilippo, '05)
- Empirical support: Pfeifer \& Kleiter ('03, '05, '06)

Modus Ponens $\left(n_{1}+n_{2}=31\right)$

■ \& $\square: A \rightarrow B, \quad A \quad \therefore \quad B$

Modus Ponens $\left(n_{3}=19\right)$

$\square: A \rightarrow B, A \quad \therefore \quad B$
$\square: A, A \rightarrow B \quad \therefore \quad B$

negated Modus Ponens $\left(n_{1}+n_{2}=31\right)$

■ \& $\square: A \rightarrow B, \quad A \quad \therefore \quad \neg B$

negated Modus Ponens $\left(n_{3}=19\right)$

■ : $A \rightarrow B, A \quad \therefore \quad \neg B$
$\square: A, A \rightarrow B \quad \therefore \quad \neg B$

Modus Tollens $\left(n_{4}=20\right)$

negated Modus Tollens $\left(n_{4}=20\right)$

$\begin{array}{lll}\square & \neg B, A \rightarrow B & \therefore \\ \square: A \rightarrow B, \neg B & \therefore & A\end{array}$

Irrelevance $\left(n_{3}+n_{4}=39\right)$

Irrelevance

$$
A \rightarrow B \quad \therefore \quad A \rightarrow C
$$

negated Irrelevance $\left(n_{3}+n_{4}=39\right)$

negated Irrelevance

$$
A \rightarrow B \quad \therefore \quad A \rightarrow \neg C
$$

