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Theoretical problems:
Paradoxes of the material conditional:
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The material conditional is not a genuine conditional

(A ⊃ B) ⇔ (¬A ∨ B)
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No paradoxes of the material conditional:

From P(B) = x infer P(B|A)∈ [0, 1]

But: from P(B) = x infer P(A ⊃ B) ∈ [x, 1]

The conditional event B|A is a genuine conditional!
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Conditionals in psychology: Uncertain conditionals

P(A ⊃ B)

P(A ∧ B)

P(B |A)

Probabilistic extension
of the mental model theory

Johnson-Laird et al.

Probabilistic relation between
premise(s) and conclusion

Chater, Oaksford et al.

Liu et al.

Empirical Result:
P(B|A) best predictor

for “if A, then B”
Evans, Over et al.

Oberauer et al.

Liu

Deductive relation between
premise(s) and conclusion

Mental probability logic

Pfeifer & Kleiter
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Coherence

I de Finetti, and {Lad, Walley, Scozzafava, Coletti, Gilio,. . . }

I degrees of belief

I complete algebra is not required

I conditional probability, P(B |A), is primitive

I zero probabilities are exploited to reduce the complexity

I imprecision

I provides semantics for System P
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Wasons selection task

If there is a vowel on the one side (A),
then there is an even number on the other side (B).

E K 4 7

P(A) = 1 P(¬A) = 1 P(B) = 1 P(¬B) = 1
P(A ∧ B) = 1 P(A ∧ B) = 1 P(A ∧ B) = 1 P(A ∧ B) = 1

P(B) = 1 incoherent! P(A) = 1 incoherent!
X X
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Design

I Two conditions: SP (n1 = 18) and PS (n2 = 18)
I 16 target tasks: 4 conditionals × 4 truth table cases
I Order of tasks:

Conditional in box Shape on screen Task type

If circle, then black • target AA
If circle, then black ◦ target AN
If circle, then black N target NA
If circle, then black M target NN

counterfactual broken screen filler item
If circle, then white • target AN
If circle, then white ◦ target AA
If circle, then white N target NN
If circle, then white M target NA

counterfactual broken screen filler item
...

...
...

If triangle, then white M target AA
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Results: Mean Response Percentages

Group Response Task Type

AA AN NA NN
SP speaks against 2.78 86.11 30.56 22.22

neither/nor 4.17 11.11 61.11 76.39
speaks for 93.06 2.78 8.33 1.39

PS speaks against 0.00 91.67 58.33 47.22
neither/nor 5.56 6.94 26.39 50.00

speaks for 94.44 1.39 15.28 2.78

Not yet clear what’s going on here.
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Two paradoxes of the material conditional, A ⊃ B

Example (Paradox 1)

B ∴ If A, then B

B ∴ If A, then not-B

Premise Conclusion

B ∴ A ⊃ B (logically valid)
P(B)= 1 ∴ P(A ⊃ B)= 1 (prob. informative)
P(B)= 1 ∴ P(A ∧ B)∈ [0, 1] (pract. non-informative)
P(B)= 1 ∴ P(B |A) ∈ [0, 1] (prob. non-informative)

B ∴ A ⊃ ¬B (not logically valid)
P(B)= 1 ∴ P(A ⊃ ¬B)∈ [0, 1] (pract. non-informative)
P(B)= 1 ∴ P(A ∧ ¬B)= 0 (prob. informative)
P(B)= 1 ∴ P(¬B |A) ∈ [0, 1] (prob. non-informative)
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responsible for what is printed on the cards.
On each card, there is a shape (triangle, square, . . . ) of a certain color
(green, blue, . . . ), like:

I green triangle, green square, green circle, . . .
I blue triangle, blue square, . . .
I red triangle, . . .
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Paradox 1: B ∴ If A, then B

A Pretty sure: There is a square on this card.

Considering A , how certain can Simon be that the following sentence

is true?

If there is a red shape on this card, then there is a square on this card.

Considering A , can Simon infer—at all—how certain he can be, that
the sentence in the box is true?

� NO, Simon cannot infer his certainty.
� YES, Simon can infer his certainty.

In case you ticked YES, please fill in

� Simon can be pretty sure that the sentence in the box is false.
� Simon can be pretty sure that the sentence in the box is true.
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If A, then B ∴ If A, then ¬B
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A ⊃ B ∴ A ⊃ ¬B (not logically valid)
P(A ⊃ B) = x ∴ P(A ⊃ ¬B) ∈ [1 − x , 1] (prob. informative)
P(A ∧ B) = x ∴ P(A ∧ ¬B) ∈ [0, 1 − x ] (prob. informative)
P(B |A) = x ∴ P(¬B |A) = 1 − x (prob. informative)
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A ⊃ B ∴ A ⊃ ¬B (not logically valid)
P(A ⊃ B) = x ∴ P(A ⊃ ¬B) ∈ [1 − x , 1] (prob. informative)
P(A ∧ B) = x ∴ P(A ∧ ¬B) ∈ [0, 1 − x ] (prob. informative)
P(B |A) = x ∴ P(¬B |A) = 1 − x (prob. informative)

A ⊃ B ∴ A ⊃ ¬B (not logically valid)
P(A ⊃ B) = .99 ∴ P(A ⊃ ¬B) ∈ [.01, 1] (pract. non-inform.)
P(A ∧ B) = .99 ∴ P(A ∧ ¬B) ∈ [0, .01] (prob. informative)
P(B |A) = .99 ∴ P(¬B |A) = .01 (prob. informative)
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Paradox 3: Monotonicity (Premise strengthening)

“If A, then B” interpreted as “A ⊃ B”

P1 If the animal is a bird, then it can fly

log. valid
C If the animal is a bird and a penguin, then it can fly

A ⊃ B ` A ∧ C ⊃ B



Cautious Monotonicity

“If A, then B” interpreted as “A ⊃ B”

P1 If the animal is a bird, then it can fly
P2 If the animal is a bird, then it is a penguin

log. valid
C If the animal is a bird and a penguin, then it can fly

The second premise “blocks” the conclusion
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negated Monotonicity (n3 = 19)
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Cautious Monotonicity (n3 = 19)
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negated Cautious Monotonicity (n3 = 19)
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Conclusions

I Framing human inference in coherence based probability logic
I new predictions (probabilistic (non-)informativeness)
I new experimental paradigms
I incomplete probabilistic knowledge leads to probability-intervals
I investigating argument forms that differentiate

I Most participants interpret conditionals as conditional events,
but. . .

I . . . differences in interpretations may indicate intra- and
interindividual differences

I Alternative interpretations, beyond ·|·, · ⊃ ·, and · ∧ ·?
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Appendix



Design Experiment 1

I Two conditions: Group 1 ( n1 = 16) and Group 2 (n2 = 15)

I Tasks: Each group 20 tasks (10 arguments affirmative &
negated)

I Group 1: Five Modus Ponens tasks and five Paradox 1 tasks with
varying uncertainties of the categorical premises (”pretty sure” /
”absolutely certain”,e.g.);

Modus Ponens: from If A, then B and A infer B

Paradox 1: from B infer If A, thenB

I Group 2: Five Modus Ponens tasks and five Paradox 2 tasks with
varying uncertainties of the categorical premises (”pretty sure” /
”absolutely certain”,e.g.);

Modus Ponens: from If A, thenB and A infer B

Paradox 2: from ¬A infer If A, thenB



Design Experiment 2

I Two conditions: Group 1 ( n3 = 19) and Group 2 (n4 = 20)
I Tasks: Each group 20 tasks (affirmative & negated)

Group 1 informative not informative

COMPLEMENT IRRELEVANCE

CAUT. MONOTONICITY I/II MONOTONICITY I/II

MODUS PONENS I/II PARADOX 1 I/II

Group 2 informative not informative

COMPLEMENT IRRELEVANCE

MODUS TOLLENS I/II CONTRAPOS. I/II

dwr MONOTONICITY I/II PARADOX 2 I/II



System P: Rationality postulates for nonmonotonic

reasoning (Kraus, Lehmann & Magidor, 1990)

Reflexivity (axiom): α|∼α

Left logical equivalence:
from |= α ≡ β and α|∼γ infer β|∼γ

Right weakening:
from |= α ⊃ β and γ|∼α infer γ|∼β

Or: from α|∼γ and β|∼γ infer α ∨ β|∼γ

Cut: from α ∧ β|∼γ and α|∼β infer α|∼γ

Cautious monotonicity:
from α|∼β and α|∼γ infer α ∧ β|∼γ

And (derived rule): from α|∼β and α|∼γ infer α|∼β ∧ γ

α |∼ β If α, normally
︸ ︷︷ ︸

?

β
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Reflexivity (axiom): α|∼α

Left logical equivalence:
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System P: Rationality postulates for nonmonotonic

reasoning (Kraus, Lehmann & Magidor, 1990)

Reflexivity (axiom): α|∼α

Left logical equivalence:
from |= α ≡ β and α|∼γ infer β|∼γ

Right weakening:
from |= α ⊃ β and γ|∼α infer γ|∼β

Or: from α|∼γ and β|∼γ infer α ∨ β|∼γ

Cut: from α ∧ β|∼γ and α|∼β infer α|∼γ

Cautious monotonicity:
from α|∼β and α|∼γ infer α ∧ β|∼γ

And (derived rule): from α|∼β and α|∼γ infer α|∼β ∧ γ

α |∼ β If α, normally
︸ ︷︷ ︸

?

β



Semantics for System P

I Normal world semantics (Kraus, Lehmann & Magidor ’90)

I Possibility semantics: α |∼ β iff Π(A ∧ B) > Π(A ∧ ¬B)
(e.g., Benferhat, Dubois & Prade ’97)

I Empirical support: Da Silva Neves, Bonnefon, & Raufaste
(’02), Benferhat, Bonnefon, Da Silva Neves (’05)

I Inhibition nets (Leitgeb ’01, ’04)

I Probability semantics
I Infinitesimal: α |∼ β iff P(β|α) = 1 − ε (e.g., Adams ’75)
I Noninfinitesimal: α |∼ β iff P(β|α) > .5 (e.g., Gilio ’02;

Biazzo, Gilio, Lukasiewicz, Sanfilippo, ’05)
I . . .

I Empirical support: Pfeifer & Kleiter (’03, ’05, ’06)



Modus Ponens (n1 + n2 = 31)
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Modus Ponens (n3 = 19)

Non−informative Yes No
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negated Modus Ponens (n1 + n2 = 31)

Non−informative Yes No

negated Modus Ponens
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negated Modus Ponens (n3 = 19)

Non−informative Yes No

negated Modus Ponens
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Modus Tollens (n4 = 20)

Non−informative Yes No

Modus Tollens
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negated Modus Tollens (n4 = 20)

Non−informative Yes No

negated Modus Tollens
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Irrelevance (n3 + n4 = 39)

Non−informative Yes No

Irrelevance
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negated Irrelevance (n3 + n4 = 39)

Non−informative Yes No
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