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A Probabilistic Semantics for Counterfactuals

Subjunctive conditionals (counterfactuals) A� B:

– If it were the case that A, then it would be the case that B

Plan of the talk:

1 A New Semantics: The Popper Function Semantics
2 Interpreting the Semantics
3 What Becomes of the Centering Axioms?
4 An Equivalent Semantics: The Probabilistic Limit Semantics
5 An Application: Are Most (Ordinary) Counterfactuals False?

(I have just finished a draft on this.)
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A New Semantics: The Popper Function Semantics

We aim at

a modification of the Lewis-Stalnaker semantics

, such that

the truth of A� B allows for exceptions (in a sense to be explained),

where the source of these exceptions might be
(a) ontic: the world is chancy,
(b) semantic: A is imprecise or underspecified.

Strategy: Let the truth of, e.g., ‘If the match were struck, it would light’
consist in its corresponding conditional probability being high.

As a prerequisite, our new semantics will involve quantification over conditional
probability functions (see Popper 1959, Stalnaker 1970, and others).

As we will show later, these conditional probability functions allow for
interpreting ‘P(Y |X) = 1’ as stating

the probability of Y given X is high, i.e., close to 1

where ‘high’ and ‘close’ are vague terms.
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Let A be a Boolean field on W .

Definition
P is a conditional probability measure (“Popper function”) on A iff

1 P : A×A→ [0,1]

,

2 P(X |X) = 1,

3 If P(W \X |X) , 1 then P(.|X) is a (finitely additive) probability measure,

4 Multiplication Axiom: P(X ∩Y |Z ) =P(X |Z )P(Y |X ∩Z ),

5 If P(X |Y ) =P(Y |X) = 1, then for all Z ∈ A: P(Z |X) =P(Z |Y ).

Absolute probabilities may be introduced by means of:

P(X) =P(X |W )

From 4 it follows: If the “absolute probability” P(X |W ) > 0, then

Ratio Formula:
P(X ∩Y |W )

P(X |W )
=P(Y |X ∩W ) =P(Y |X)

But Popper functions also allow for conditionalization on absolute zero sets!

Conditional probability measures are to be considered conceptually primitive,
rather than being reducible to absolute probability (cf. Hájek 2003).
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Hannes Leitgeb (University of Bristol) A Probabilistic Semantics for Counterfactuals May 2009 4 / 19



Let A be a Boolean field on W .

Definition
P is a conditional probability measure (“Popper function”) on A iff

1 P : A×A→ [0,1],

2 P(X |X) = 1,

3 If P(W \X |X) , 1 then P(.|X) is a (finitely additive) probability measure,

4 Multiplication Axiom: P(X ∩Y |Z ) =P(X |Z )P(Y |X ∩Z ),

5 If P(X |Y ) =P(Y |X) = 1, then for all Z ∈ A: P(Z |X) =P(Z |Y ).

Absolute probabilities may be introduced by means of:

P(X) =P(X |W )

From 4 it follows: If the “absolute probability” P(X |W ) > 0, then

Ratio Formula:
P(X ∩Y |W )

P(X |W )
=P(Y |X ∩W ) =P(Y |X)

But Popper functions also allow for conditionalization on absolute zero sets!

Conditional probability measures are to be considered conceptually primitive,
rather than being reducible to absolute probability (cf. Hájek 2003).
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This is thus our new probabilistic semantics for counterfactuals:

Definition
〈W ,A,(Pw)w∈W ,~.�〉 is a Popper function model iff

W is a non-empty set of possible worlds,

A= {~A� |A ∈ L}, where L is a propositional language with�,

for every w ∈W : Pw is a Popper function on A,

~.� : L →℘(W ) is subject to the following semantic rules:

– Standard semantic rules for classical propositional connectives.

– A new probabilistic truth condition for subjunctive conditionals:

w ∈ ~A� B� if and only if Pw(~B�|~A�) = 1

(We say: A is true in w iff w ∈ ~A�.)

A formula A in L is logically true in the Popper function semantics iff
A is true in every world in every Popper function model.
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On the logical side, we get an extension of results by James Hawthorne (1996),
Arlo-Costa & Parikh (2005) to the full language of conditional logic:

Theorem
The system V of conditional logic is sound and complete with respect to the
Popper function semantics for subjunctive conditionals.

Rules of V:
1 Modus Ponens (for ⊃)
2 Deduction within subjunctive conditionals: for any n ≥ 1

` (B1∧ . . .∧Bn)⊃ C
` ((A� B1)∧ . . .∧ (A� Bn))⊃ (A� C)

3 Interchange of logical equivalents

Axioms of V:
1 Truth-functional tautologies
2 A� A
3 (¬A� A)⊃ (B� A)
4 (A� ¬B)∨ (((A∧B)� C)↔ (A� (B ⊃ C)))
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Interpreting the Semantics

E.g.: ‘If I were at least 1.90m tall, I would be precisely 1.90m tall’
would be true(!?) according to Lewis (see Hájek, draft).

But Pw(. |~I am at least 1.90m tall�) is just some probability measure. X

Since the conditionals we are interested in are counterfactuals, the
Popper functions in our semantics should be objective ones, i.e., yielding
conditional single case chances (or that’s the default assumption).

Popper functions will be constrained pragmatically (context, time,. . .).

In the semantics, we demand

w ∈ ~A� B� if and only if Pw(~B�|~A�) = 1

but not
Pw(~A� B�|W ) =Pw(~B�|~A�)

(hence the semantics does not run into Lewis’ Triviality result).
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But we still know such a semantics is problematic?
(cf. Edgington 1995 & 2008, Bennett 2003):

“Prima facie, there is room for an account of objectively correct conditional
thoughts. . . ‘If A, B’ is true iff the objective probability of B given A is
sufficiently high. This is not compatible with the Thesis, and is
independently objectionable. (I do not object to the fact that the truth
condition is vague.)” (Edgington 1995, p.292)

However, the “objections” vanish as long as one is willing to distinguish:

(1a) Cr(~B�|~A�) = Cr(~A� B� |W )

(1b) Cr(~B�|~A�) = Acc(A� B)

and
(2a) Cr(~B�|~A�) = Cr(~A→ B� |W )

(2b) Cr(~B�|~A�) = Acc(A→ B)

Moreover, “The truth condition has the additional embarrassing
consequence that the truth of ‘If A, B’ is compatible with the truth of
A&¬B” : ↪→ But that’s exactly what we want!
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But what exactly is the purpose of this semantics?

It does not give a conceptual analysis of the commonsensical�, since
the latter could not be that complex (and maybe does not allow for
exceptions).

Indeed: As a first approximation, the semantics aims to give the right
truth conditions for A� B, which does not necessarily involve expressing
the “right concepts” that are underlying�.

Secondly, we allow for deviations from the truth conditions of our everyday
� if this leads to a better theory, i.e., if this avoids philosophical
problems and makes the semantics continuous with science.

Such deviations might even be necessary if our common sense� does
not have a reference or if our standard semantical theory misdescribes
what it refers to.
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What Becomes of the Centering Axioms?

If compared to Lewis’ system VC, the only missing logical axioms are:

C1 Weak Centering: (A� B)⊃ (A⊃ B)

C2 Centering: (A∧B)⊃ (A� B)

Why do they fail?

Pw(~B�|~A�) is not necessarily tied to a particular distribution of truth values
of A and B in w !

Is this a problem? Not necessarily.

A∧B should not make A� B true, nor should A∧¬B make A� B false(?).

(Strong) Centering is not that plausible anyway.
Contra Weak Centering: w might be exceptional with respect to its own
probabilistic standards.
Pro Weak Centering: It entails counterfactual MP/MT to be valid.
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It is possible to restore Centering by imposing extra constraints:

Actual Determinism corresponds to Centering:

Semantic constraint:
For all w ∈W , for all A ∈ L : Pw(~A� |W ) equals the truth value of A in w
(hence Pw(~A� |W ) only takes values in {0,1}).
Characteristic axioms:
(A� B)⊃ (A⊃ B)
(A∧B)⊃ (A� B)

Alternatively, if state descriptions are available: one can postulate
Pw({w}|W ) = 1 for Centering (or Pw({w}|W ) > 0 for mere Weak Centering).

Counterfactual Determinism corresponds to Conditional Excluded Middle
(Stalnaker’s axiom):

Semantic constraint:
For all w ∈W : Pw(.|.) only takes values in {0,1}.
Characteristic axiom:
(A� B)∨ (A� ¬B)
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One can also find “approximations” of the Centering axioms without adding
constraints on our models:

The following similar-looking axioms are logically true:

(A� B)⊃ (>� (A⊃ B))
(>� (A∧B))⊃ (A� B)
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Or one “saves” counterfactual MP (MT) pragmatically as follows (omitting ‘~.�’):

By a variant of the Principal Principle,

Cr(B|A∧P(B|A) = r ∧C) = r

for admissible C, an “initial” credence function Cr , and P expressing P.

Hence,
Cr(B|A∧P(B|A) = 1) = 1

In other words,
Cr(B|A∧ (A� B)) = 1

I.e., if ‘→’ is the indicative ‘if-then’, then by Ernest Adams’ semantics

A∧ (A� B)→ B

gets assigned a conditional subjective probability of 1 by all credence
functions Cr′ that are sufficiently like the “initial” Cr.

So if A and A� B are assertable according to Cr′, then B is so as well.
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An Equivalent Semantics: The Probabilistic Limit Semantics

In order to interpret the Popper function semantics properly, it is illuminating to
compare it with an alternative probabilistic semantics:

〈W ,A,((Pw
i )i∈Iw )w∈W ,(≤w)w∈W ,~.�〉 is a probabilistic limit model for

subjunctive conditionals iff

W is a non-empty set of possible worlds,

A= {~A� |A ∈ L}, for L as before,

for every w ∈W , (Pw
i )i∈Iw is a family of absolute (finitely additive)

probability measures on A,

for every w ∈W , ≤w is a linear preorder on Iw
(formally equivalent to Lewis’ sphere systems!),

the Convergence Assumption is satisfied:

for all w ∈W and A,B ∈ L , either there is no i ∈ Iw such that

Pw
i (~A�) > 0, or the sequence

(
Pw

i (~B∧A�
Pw

i (~A�)

)
i∈Iw

converges.
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(
Pw

i (~B∧A�
Pw

i (~A�)

)
i∈Iw

is said to converge to x ∈ [0,1] if and only if

for all ε > 0 there is an index j ∈ Iw with Pw
j (~A�) > 0, such that

for all i ≤w j with Pw
i (~A�) > 0 it holds that |P

w
i (~B∧A�
Pw

i (~A�) − x |< ε.

Pw
ie

Pw
if

Pw
ic

Pw
id

Pw
jPw

ib

Pw
ia. . . . . .x ←

︸                       ︷︷                       ︸
ε

~.� : L →℘(W ) satisfies the following semantic rules:

– Standard semantic rules for classical propositional connectives.

– w ∈ ~A� B� if and only if either of the following is satisfied:
There is no i ∈ Iw , such that Pw

i (~A�) > 0.
It holds that:

lim
i∈Iw

(
Pw

i (~B∧A�
Pw

i (~A�)
) = 1
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In a sense, this is the same semantics as the Popper function semantics:

Theorem
Every family (Pi)i∈I of probability measures (on the same countable
algebra A) which satisfies the Convergence Assumption with respect to a
linear preorder ≤, represents a Popper function P (on A), where the
representation is given by:

Repr If there is an i ∈ I, such that Pi(X) > 0, then

P(Y |X) = lim
i∈I

(
Pi(Y ∩X)

Pi(X)
)

Otherwise, P(Y |X) = 1.

Every Popper function (on a countable algebra A) can be represented by
means of Repr by a sequence of probability measures (on A) which
satisfies the Convergence Assumption with respect to a linear preorder.

(This is some improvement on van Fraassen 1976 and related results.)
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Hence, the Popper function semantics can also be regarded based on
comparative similarity, but now similarity of absolute probability functions:

– Pw(.|W ) may be interpreted as the actual absolute probability measure.

– Pw(Y |X) = 1 if and only if the more similar an absolute probability
measure is to the actual absolute probability measure, the closer the
conditional probability of Y given X that it determines is to 1.

The truth of A� B in w allows for Pw
i (~¬B�|~A�) > 0 for all relevant i !

Validity in the probabilistic limit semantics extends probabilistic validity in
Adams’ sense, even though the former is based on truth preservation.

Since the probabilistic limit semantics “overlaps” with Adams’ semantics
for (indicative) conditionals, we can adopt Adams’ (1986) interpretation of
conditionals in “On the logic of high probability”:

– A� B says: if a probability measure P is similar to the actual probability
measure, then P(~B�|~A�) > 1− ε for small ε (with vague ‘similar’ / ‘small’)

(Alternative: Lehmann&Magidor 1992, McGee 1994, Halpern 2001 on non-standard P)

Hannes Leitgeb (University of Bristol) A Probabilistic Semantics for Counterfactuals May 2009 17 / 19



Hence, the Popper function semantics can also be regarded based on
comparative similarity, but now similarity of absolute probability functions:

– Pw(.|W ) may be interpreted as the actual absolute probability measure.

– Pw(Y |X) = 1 if and only if the more similar an absolute probability
measure is to the actual absolute probability measure, the closer the
conditional probability of Y given X that it determines is to 1.

The truth of A� B in w allows for Pw
i (~¬B�|~A�) > 0 for all relevant i !

Validity in the probabilistic limit semantics extends probabilistic validity in
Adams’ sense, even though the former is based on truth preservation.

Since the probabilistic limit semantics “overlaps” with Adams’ semantics
for (indicative) conditionals, we can adopt Adams’ (1986) interpretation of
conditionals in “On the logic of high probability”:

– A� B says: if a probability measure P is similar to the actual probability
measure, then P(~B�|~A�) > 1− ε for small ε (with vague ‘similar’ / ‘small’)

(Alternative: Lehmann&Magidor 1992, McGee 1994, Halpern 2001 on non-standard P)

Hannes Leitgeb (University of Bristol) A Probabilistic Semantics for Counterfactuals May 2009 17 / 19



Hence, the Popper function semantics can also be regarded based on
comparative similarity, but now similarity of absolute probability functions:

– Pw(.|W ) may be interpreted as the actual absolute probability measure.

– Pw(Y |X) = 1 if and only if the more similar an absolute probability
measure is to the actual absolute probability measure, the closer the
conditional probability of Y given X that it determines is to 1.

The truth of A� B in w allows for Pw
i (~¬B�|~A�) > 0 for all relevant i !

Validity in the probabilistic limit semantics extends probabilistic validity in
Adams’ sense, even though the former is based on truth preservation.

Since the probabilistic limit semantics “overlaps” with Adams’ semantics
for (indicative) conditionals, we can adopt Adams’ (1986) interpretation of
conditionals in “On the logic of high probability”:

– A� B says: if a probability measure P is similar to the actual probability
measure, then P(~B�|~A�) > 1− ε for small ε (with vague ‘similar’ / ‘small’)

(Alternative: Lehmann&Magidor 1992, McGee 1994, Halpern 2001 on non-standard P)

Hannes Leitgeb (University of Bristol) A Probabilistic Semantics for Counterfactuals May 2009 17 / 19



Hence, the Popper function semantics can also be regarded based on
comparative similarity, but now similarity of absolute probability functions:

– Pw(.|W ) may be interpreted as the actual absolute probability measure.

– Pw(Y |X) = 1 if and only if the more similar an absolute probability
measure is to the actual absolute probability measure, the closer the
conditional probability of Y given X that it determines is to 1.

The truth of A� B in w allows for Pw
i (~¬B�|~A�) > 0 for all relevant i !

Validity in the probabilistic limit semantics extends probabilistic validity in
Adams’ sense, even though the former is based on truth preservation.

Since the probabilistic limit semantics “overlaps” with Adams’ semantics
for (indicative) conditionals, we can adopt Adams’ (1986) interpretation of
conditionals in “On the logic of high probability”:

– A� B says: if a probability measure P is similar to the actual probability
measure, then P(~B�|~A�) > 1− ε for small ε (with vague ‘similar’ / ‘small’)

(Alternative: Lehmann&Magidor 1992, McGee 1994, Halpern 2001 on non-standard P)

Hannes Leitgeb (University of Bristol) A Probabilistic Semantics for Counterfactuals May 2009 17 / 19



Hence, the Popper function semantics can also be regarded based on
comparative similarity, but now similarity of absolute probability functions:

– Pw(.|W ) may be interpreted as the actual absolute probability measure.

– Pw(Y |X) = 1 if and only if the more similar an absolute probability
measure is to the actual absolute probability measure, the closer the
conditional probability of Y given X that it determines is to 1.

The truth of A� B in w allows for Pw
i (~¬B�|~A�) > 0 for all relevant i !

Validity in the probabilistic limit semantics extends probabilistic validity in
Adams’ sense, even though the former is based on truth preservation.

Since the probabilistic limit semantics “overlaps” with Adams’ semantics
for (indicative) conditionals, we can adopt Adams’ (1986) interpretation of
conditionals in “On the logic of high probability”:

– A� B says: if a probability measure P is similar to the actual probability
measure, then P(~B�|~A�) > 1− ε for small ε (with vague ‘similar’ / ‘small’)

(Alternative: Lehmann&Magidor 1992, McGee 1994, Halpern 2001 on non-standard P)
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Perhaps scientifically supported Popper functions can be used to clarify the
metaphysics of a (quasi-)Lewisian semantics for counterfactuals?
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An Application: Are Most (Ordinary) Counterfactuals False?

YES! (Hájek, draft; John Hawthorne 2005?)

Quantum mechanics tell us:

If I had dropped the plate, it might have flown off sideways.

But then the following subjunctive conditional must be false:

If I had dropped the plate, it would have fallen to the floor.

NO? (In light of our new semantics)

Understand this as expressing a true possibility:
If I had dropped the plate, it might have flown off sideways.

But take this to be true while interpreted probabilistically:
If I had dropped the plate, it would have fallen to the floor.

According to our probabilistic semantics, the latter counterfactual might still be
true as long as exceptions to it have a probability close to 0.

(This is not quite the end of the story. . .)
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YES! (Hájek, draft; John Hawthorne 2005?)

Quantum mechanics tell us:

If I had dropped the plate, it might have flown off sideways.

But then the following subjunctive conditional must be false:

If I had dropped the plate, it would have fallen to the floor.

NO? (In light of our new semantics)

Understand this as expressing a true possibility:
If I had dropped the plate, it might have flown off sideways.

But take this to be true while interpreted probabilistically:
If I had dropped the plate, it would have fallen to the floor.

According to our probabilistic semantics, the latter counterfactual might still be
true as long as exceptions to it have a probability close to 0.

(This is not quite the end of the story. . .)
Hannes Leitgeb (University of Bristol) A Probabilistic Semantics for Counterfactuals May 2009 19 / 19


	A Probabilistic Semantics for Counterfactuals
	A Probabilistic Semantics for Counterfactuals
	A New Semantics: The Popper Function Semantics
	A New Semantics: The Popper Function Semantics
	A New Semantics: The Popper Function Semantics
	A New Semantics: The Popper Function Semantics
	A New Semantics: The Popper Function Semantics
	Interpreting the Semantics
	Interpreting the Semantics
	Interpreting the Semantics
	Interpreting the Semantics
	Interpreting the Semantics
	What Becomes of the Centering Axioms?
	What Becomes of the Centering Axioms?
	What Becomes of the Centering Axioms?
	What Becomes of the Centering Axioms?
	An Equivalent Semantics: The Probabilistic Limit Semantics
	An Equivalent Semantics: The Probabilistic Limit Semantics
	An Equivalent Semantics: The Probabilistic Limit Semantics
	An Equivalent Semantics: The Probabilistic Limit Semantics
	An Equivalent Semantics: The Probabilistic Limit Semantics
	An Application: Are Most (Ordinary) Counterfactuals False?
	An Application: Are Most (Ordinary) Counterfactuals False?
	An Application: Are Most (Ordinary) Counterfactuals False?
	An Application: Are Most (Ordinary) Counterfactuals False?

