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1 The Judy Benjamin problem

In an example by van Fraassen [1981], Judy Benjamin is dropped in an area
divided into Red (R) and Blue (¬R) and into Second Company (S) and Head-
quarters (¬S) sections. She assigns equal probability to all quadrants Q.

She then receives this radio message: “I can’t be sure where you are. If you
are in Red territory, the odds are 3 : 1 that you are in Headquarters area.”
How should she adapt her probabilities?



Intuitive desiderata for a solution

D1: Her conditional probability for being in ¬S given that she is in R should
be three times her conditional probability for being in S given that she
is in R;

D2: none of her conditional probabilities given any proposition in {¬R,R∧
S,R∧¬S} should change; and

D3: the probability of being in R should not change: no information has
been received that would seem relevant to that.



Distance minimization
Various “distance minimization rules” have been considered in relation to
the Judy Benjamin problem.

The idea is that the information contained in the radio message imposes
a specific constraint on the probability assignment over the segments Q
and that Judy’s new probability function should be the one that satisfies this
constraint and otherwise deviates as little as possible from her old one.

The phrase “as little as possible” is then spelled out in terms of a distance
function.



Relative entropy distance minimization
The best studied distance function is relative entropy:

RE(Pr,Pr ′) =
∑



Pr ′(Q) log
Pr ′(Q)

Pr(Q)
,

Using this, we can look for the closest new probability assignment that sat-
isfies the constraint:
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¨

Pr :
Pr(Q2)

Pr(Q1)
= 3

«

, Prnew = {Pr ∈  : RE(Pr,Prold) minimal} .



Two worries

1. All the distance minimization rules that have been discussed in the
context of the Judy Benjamin problem violate desideratum D3: Judy’s
probability for R changes after hearing the radio message;

2. each of these rules leads Judy to assign a different probability to R, but
there are no principled grounds for choosing between the rules.

The second worry is considered to be still an open problem. Van Fraassen
has tried to explain away the first.



Worry 1 removed?
If Judy determines her new probability for R by means of any of the distance
minimization rules, it decreases; so D3 is violated.
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But according to van Fraassen, the intuition underlying that desideratum is
not to be trusted anyway. For consider the limiting case: if Judy learns “If in
Red, then in Headquarters, period,” the decrease in the probability of R is a
matter of course. Or is it?



2 Updating on conditionals

Van Fraassen is supposing that upon learning a conditional, one should con-
ditionalize on the corresponding material conditional. An attractively simple
picture of updating on conditionals: is it correct?

There is little one can say about conditionals that is not controversial. Do
conditionals have truth conditions? If yes, what are they? If no, how do we
account for compounds of conditionals?

The question how we ought to update on a conditional has even been largely
ignored in the philosophical literature. (Has the question how people ac-
tually update on a conditional been equally ignored in the psychological
literature?)



Conditionalizing on material conditionals
It is a well-known fact that

If (i) 0 < Pr(A) < 1, (ii) 0 < Pr(B), and (iii) Pr(B |A) < 1, then Pr(A |A ⊃ B) <
Pr(A).

But consider this example: Sarah and Marian have arranged to go for sun-
downers at the Westcliff hotel tomorrow. Sarah feels there is some chance
that it will rain, but thinks they can always enjoy the view from inside. To
make sure, Marian consults the staff at the Westcliff hotel and finds out that
in the event of rain, the inside area will be occupied by a wedding party.
So she tells Sarah: “If it rains tomorrow, we cannot have sundowners at
the Westcliff.” Upon learning this conditional, Sarah sets her probability for
sundowners and rain to zero, but she does not optimistically reduce her
probability for rain after learning the conditional!



Comments
This is not the end of the material conditionals account:

• advocates of the material conditional account are not necessarily com-
mitted to conditionalization;

• even if they are, they can legitimately claim that in learning a condi-
tional we come to know more than the corresponding material condi-
tional. (For instance, we may in addition come to know that there is
a certain evidential relationship between antecedent and consequent.)
And Pr(A |A ⊃ B) < Pr(A) is compatible with Pr(A |(A ⊃ B)∧ C) ¾ Pr(A).

Still, we cannot uncontroversially defend the consequences of a minimum
relative entropy update in the Judy Benjamin case by referring to condition-
alization on a material conditional.



An alternative proposal
The bulk of the proposal concerns the kind of case for which, pre-theoretically,
generalized versions of the desiderata D1–D3 hold (so in particular cases in
which the learning of a conditional is or would be irrelevant to one’s proba-
bility for the conditional’s antecedent, as in the Judy Benjamin case).

The update rule for this kind of case consists of two parts. This is the first:

After learning “If A, then the odds for B1, . . . , Bn are c1 : · · · : cn,” where
{¬A,A∧ B1, . . . , A∧ Bn} is a partition, a person should set her proba-
bility for B conditional on A equal to c

�
∑n
j=1 cj, for all .

For instance, after learning the radio message, Judy should set her condi-
tional probability for being in Headquarters Company area given that she is
in Red territory equal to 3/4 and her probability for being in Second Com-
pany area given that she is in Red territory equal to 1/4.



Adams conditioning
The second part of the update rule consist of a proposal made in Bradley
[2005] in the context of preference kinematics, which is called Adams con-
ditioning:

Given a partition {U0, U1, . . . Un}, and supposing we obtain new
probabilities Prnew(U) for  = 1, . . . , n, the new probability Prnew

must be as follows:

Prnew(C) = Prold(C |U0)Prold(U0) +
n
∑

=1

Prnew(U)Prold(C |U).

It follows from a theorem proven by Richard Bradley that if we update
on conditionals whenever D1–D3 hold pre-theoretically, then our posterior
probability function will satisfy these desiderata.



Adams vs. Jeffrey I
Information does not always come in neat propositional packages. Richard
Jeffrey devised a rule for updating a probability assignment on new infor-
mation captured by a probability assignment over a partition of possible
events.

Prnew(C) =
∑



Prnew(Q)Prold(C |Q).

Jeffrey’s rule does not tell us how we can obtain this probability assignment
over the partition of Q, other than that it stems from our observation and
experience.



Adams vs. Jeffrey II
Say that we learn “If R, then the odds for ¬S : S are q1 : q2”, and that, upon
learning this, we do not want to adapt our degree of belief Pr(R) = r.

We can achieve this by applying Jeffrey conditionalization to the partition of
events U = {U0, U1, U2} = {¬R,R ∧ ¬S,R ∧ S} using the odds, (1−r)/r(q1 +
q2) : q1 : q2.



Adams vs. Jeffrey III
So, Jeffrey conditionalization solves the Judy Benjamin problem in a way that
respects D1–D3. This is a surprise, as the problem had been taken to mo-
tivate the search for update mechanisms other than Bayes’s and Jeffrey’s
rules.

On the other hand, once we know that Adams conditioning helps us solve
the problem, it is not really a surprise that Jeffrey conditioning does: the
former is just a special case of Jeffrey’s rule; the only difference is that in
Adams conditioning, the probability of one of the elements is “hardwired”
to be invariant.



Adams vs. Jeffrey IV
Thus we can choose to. . .

• take the invariance of the probability of the antecedent as an explicit
part of the input to the update rule, as for Jeffrey’s rule. We may then
derive the required constraint from the context of the example cases.

• take the invariance of the probability of the antecedent as implicit to
the update rule itself. Based on the context we may then decide that
Adams conditioning is applicable.

The difference between these two ways of updating is of little consequence.
The boundary between criteria for applicability and input seems vague.



3 A distance function for Adams conditioning

The original approach to the Judy Benjamin problem had been to look for
some distance minimization rule. While we can do without such a rule, we
may ask whether there is one that yields the results of Adams conditioning.

It turns out that minimizing the inverse relative entropy distance exactly
yields the required results.

RE(Pr,Pr ′) =
∑



Pr(U) log
Pr(U)

Pr′(U)

(RE and IRE are genuinely different functions; they are not symmetric.)



Remark
Note that IRE minimization is not just formally very close to RE minimiza-
tion, but also conceptually: where the latter has you select the probability
function that is RE-closest to your present probability function as seen from
your current perspective, IRE minimization has you select the probability
function that is RE-closest to your present probability function as seen from
the perspective you will have after adopting the probability function to be
selected.



4 Distance minimization generalized

In the cases of Sarah and Judy, learning the conditional was pre-theoretically
irrelevant to the probability for the conditional’s antecedent. These cases
are covered by our proposal. But not all cases are like this:

A jeweller has been shot in his store and robbed of a golden watch. How-
ever, it is not clear at this point what the relation between these two events
is; perhaps someone shot the jeweller and then someone else saw an op-
portunity to steal the watch. Kate thinks there is some chance that Henry
is the robber (R). On the other hand, she strongly doubts that he is capable
of shooting someone, and thus, that he is the shooter (S). Now the inspec-
tor, after hearing the testimonies of several witnesses, tells Kate: “If Henry
robbed the jeweller, then he also shot him.” As a result, Kate becomes
more confident that Henry is not the robber, while her probability for Henry
having shot the jeweller does not change.



More on Kate and Henry
Kate’s case can be accommodated by a sort of counterpart of Adams con-
ditioning that keeps the probability of the consequent invariant.

But what if the update leads to a conflict between the probabilities of the
antecedent and consequent? Perhaps Kate cherishes the idea that Henry is
not a murderer, but on the other hand she realizes that he was in need of
some fast cash and might therefore well be the robber.

She must try to find a trade-off between maintaining a high probability of
Henry’s being the robber and maintaining a low probability of his having
shot the jeweller, and she must do so under the constraint that he cannot
have done the former without having done the latter.



A large class of distance functions
To accommodate a trade-off between antecedent and consequent, we may
use a Hellinger distance and supplement it with weights. Where {Q1, . . . , Qn}
are the strongest consistent propositions in the algebra, and  ∈ R+ ∪ {ω}
is the weight assigned to Q, the rule says that we ought to minimize the
following function:

EE(Pr,Pr ′) =
n
∑

=1



�
p

Pr(Q)−
p

Pr ′(Q)
�2

.

The higher , the more resistance to deviations in the probability P(Q).
In other words, the weights indicate how much you hate to change the
probability for a given cell of the partition. In still other words, the values of
the weights express epistemic entrenchment.



Two remarks
The rule of EE minimization can be applied quite generally, also to the kind
of conditionals for which we proposed the Adams type update. Indeed, that
update rule is a limiting case of the EE rule.

The rule can be visualized as follows:
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Numerical example
Setting the odds Prnew(Q2) : Prnew(Q1) to 3 : 1 and to 50 : 1 respectively,
setting 2 = 4 = 1, and varying  = 1 = 2, we obtain the following
updated probability assignments.

Probability

Odds Weight Q1 = R∧ S Q2 = R∧¬S Q3 = ¬R∧ S Q4 = ¬R∧¬S
- - 0.10 0.70 0.10 0.10

3 1 0.53 0.18 0.15 0.15

5 0.21 0.07 0.13 0.60

100 0.10 0.03 0.10 0.76

50 1 0.47 0.01 0.26 0.26

5 0.15 0.00 0.13 0.72

100 0.10 0.00 0.10 0.79



Is more needed? I
The weights a person is supposed to assign to the relevant propositions will
not come out of thin air but may be assumed to be interconnected with
(even if presumably not fully determined by) things she believes; nor will
these weights remain fixed once and for all but will, plausibly, themselves
change in response to things the person learns.

Our proposal is silent on both of these issues. To properly address them, we
may well have to go beyond our current representation of epistemic states
in terms of degrees of belief plus weights.



Is more needed? II
But perhaps we do have to rely on our own judgment in assigning weights.

Something very similar is already the case for the kind of uncertain learning
events that Jeffrey’s rule was devised for: there is no rule telling us how
a glimpse of a tablecloth in a poorly lit room is to change our assignment
of probabilities to the various relevant propositions concerning the cloth’s
color.

The point may be more general still. Bradley [2005]: “[Even Bayes’s rule]
should not be thought of as a universal and mechanical rule of updating,
but as a technique to be applied in the right circumstances, as a tool in
what Jeffrey terms the ‘art of judgment’.” In the same way, determining
and adapting the weights EE supposes may be an art, or a skill, rather
than a matter of calculation or derivation from more fundamental epistemic
principles.



5 Discussion

• Conditionalization on the material implication is not necessarily a good
account of the learning of conditional information.

• Hence, the fact that relative entropy minimization affects the probabil-
ity of the antecedent cannot be defended by reference to conditional-
ization on a material conditional.

• If we gather the constraints imposed by the Judy Benjamin story, they
pin down a complete probability assignment over a partition, and we
can apply Jeffrey’s rule of updating.

• Alternatively, we can apply Adams conditioning, using an incomplete
probability assignment over a partition as input. The further constraint
then appears as a condition of applicability.



Discussion (continued)

• Minimizing the distance function IRE gives the same result as Adams
conditionalization.

• We can define a whole class of distance functions, each of them asso-
ciated with different epistemic entrenchments for the probabilities of
the elements of the partition.

• In the face of this plethora of update rules, we note that picking the ap-
propriate rule for a given occasion may be an art rather than a matter
of appealing to a further rule or rules.



Thank you
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